Calcium Fracture and Device Over Expansion in Transcatheter Aortic Valve Replacement for Bicuspid Aortic Valves.
Balloon-expandable
Calcific aortic valve disease
Computational modeling
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
05
01
2023
accepted:
16
05
2023
medline:
26
9
2023
pubmed:
23
5
2023
entrez:
23
5
2023
Statut:
ppublish
Résumé
Transcatheter aortic valve replacement (TAVR) in patients with bicuspid aortic valve disease (BAV) has potential risks of under expansion and non-circularity which may compromise long-term durability. This study aims to investigate calcium fracture and balloon over expansion in balloon-expandable TAVs on the stent deformation with the aid of simulation. BAV patients treated with the SAPIEN 3 Ultra with pre- and post-TAVR CTs were analyzed (n = 8). Simulations of the stent deployment were performed (1) with baseline simulation allowing calcium fracture, (2) without allowable calcium fracture and (3) with balloon over expansion (1 mm larger diameter). When compared to post CT, baseline simulations had minimal error in expansion (2.5% waist difference) and circularity (3.0% waist aspect ratio difference). When compared to baseline, calcium fracture had insignificant impact on the expansion (- 0.5% average waist difference) and circularity (- 1.6% average waist aspect ratio difference). Over expansion had significantly larger expansion compared to baseline (15.4% average waist difference) but had insignificant impact on the circularity (- 0.5% waist aspect ratio difference). We conclude that stent deformation can be predicted with minimal error, calcium fracture has small differences on the final stent deformation except in extreme calcified cases, and balloon over expansion expands the waist closer to nominal values.
Identifiants
pubmed: 37219698
doi: 10.1007/s10439-023-03246-6
pii: 10.1007/s10439-023-03246-6
doi:
Substances chimiques
Calcium
SY7Q814VUP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2172-2181Informations de copyright
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Références
Siu, S. C., and C. K. Silversides. Bicuspid aortic valve disease. J Am Coll Cardiol. 55:2789–2800, 2010.
doi: 10.1016/j.jacc.2009.12.068
pubmed: 20579534
Yutzey, K. E., L. L. Demer, S. C. Body, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 34:2387–2393, 2014.
doi: 10.1161/ATVBAHA.114.302523
pubmed: 25189570
pmcid: 4199903
Leon, M. B., M. J. Mack, R. T. Hahn, et al. Outcomes 2 years after transcatheter aortic valve replacement in patients at low surgical risk. J Am. Coll. Cardiol. 77:1149–1161, 2021.
doi: 10.1016/j.jacc.2020.12.052
pubmed: 33663731
Kim, W.-K., C. Liebetrau, U. Fischer-Rasokat, et al. Challenges of recognizing bicuspid aortic valve in elderly patients undergoing TAVR. Int. J. Cardiovasc. Imaging. 36:251–256, 2020.
doi: 10.1007/s10554-019-01704-8
pubmed: 31587128
Edwards Lifesciences Lsasuthv. Approval for modifying the labeling to remove the precaution regarding patients with a congenital bicuspid aortic valve. Administration FaD, editor, 2020.
Medtronic Corevalve LLC Medtronic CoreValve Evolut R System MCEPS, and Medtronic Evolut PRO+ System. Approval for modifying a precaution in the labeling regarding patients with a congenital bicuspid aortic valve. Administration FaD, editor, 2020.
Fukui, M., V. N. Bapat, S. Garcia, et al. Deformation of transcatheter aortic valve prostheses: implications for hypoattenuating leaflet thickening and clinical outcomes. Circulation. 146:480–493, 2022.
doi: 10.1161/CIRCULATIONAHA.121.058339
pubmed: 35862182
Nakajima, A., T. Naganuma, H. Yuki, et al. The impact of aortic valvular calcium on transcatheter heart valve distortion. J. Interv. Cardiol. 2021:8829906, 2021.
doi: 10.1155/2021/8829906
pubmed: 33500684
pmcid: 7803404
Rashid, H. N., M. Michail, J. Ramnarain, et al. The impact of hypo-attenuated leaflet thickening on haemodynamic valve deterioration following transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 16:168–173, 2022.
doi: 10.1016/j.jcct.2021.11.013
pubmed: 34852974
Gunning, P. S., N. Saikrishnan, L. M. McNamara, and A. P. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.
doi: 10.1007/s10439-014-1008-6
pubmed: 24719050
Khodaee, F., M. Barakat, M. Abbasi, D. Dvir, and A. N. Azadani. Incomplete expansion of transcatheter aortic valves is associated with propensity for valve thrombosis. Interact. Cardiovasc. Thorac. Surg. 30:39–46, 2020.
doi: 10.1093/icvts/ivz213
pubmed: 31873743
Yeats, B. B., P. K. Yadav, L. P. Dasi, and V. H. Thourani. Treatment of bicuspid aortic valve stenosis with TAVR: filling knowledge gaps towards reducing complications. Curr. Cardiol. Rep. 24(1):33–41, 2022.
doi: 10.1007/s11886-021-01617-w
pubmed: 35099762
Yeats, B. B., P. K. Yadav, L. P. Dasi, and V. H. Thourani. Transcatheter aortic valve replacement for bicuspid aortic valve disease: does conventional surgery have a future? Ann. Cardiothorac. Surg. 11(4):389–401, 2022.
doi: 10.21037/acs-2022-bav-20
pubmed: 35958538
pmcid: 9357960
Anam, S. B., B. J. Kovarovic, R. P. Ghosh, et al. Assessment of paravalvular leak severity and thrombogenic potential in transcatheter bicuspid aortic valve replacements using patient-specific computational modeling. J. Cardiovasc. Transl. Res. 15:834–844, 2022.
doi: 10.1007/s12265-021-10191-z
pubmed: 34859367
Lavon, K., G. Marom, M. Bianchi, et al. Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Med. Biol. Eng. Comput. 57:2129–2143, 2019.
doi: 10.1007/s11517-019-02012-y
pubmed: 31372826
pmcid: 6801083
Dowling, C., A. M. Bavo, N. El Faquir, et al. Patient-specific computer simulation of transcatheter aortic valve replacement in bicuspid aortic valve morphology. Circ. Cardiovasc. Imaging.12:e009178, 2019.
doi: 10.1161/CIRCIMAGING.119.009178
pubmed: 31594409
Morany, A., K. Lavon, R. Halevi, et al. Fragmentation of different calcification growth patterns in bicuspid valves during balloon valvuloplasty procedure. Ann. Biomed. Eng. 51(5):1014–1027, 2022.
doi: 10.1007/s10439-022-03115-8
pubmed: 36451023
Mathur, M., J. M. McCabe, G. Aldea, J. Pal, C. W. J. C. Don, and C. Interventions. Overexpansion of the 29 mm SAPIEN 3 transcatheter heart valve in patients with large aortic annuli (area > 683 mm
doi: 10.1002/ccd.27190
pubmed: 28836337
Sathananthan, J., S. Sellers, A. Barlow, et al. Overexpansion of the SAPIEN 3 transcatheter heart valve: an ex vivo bench study. JACC Cardiovasc. Interv. 11:1696–1705, 2018.
doi: 10.1016/j.jcin.2018.06.027
pubmed: 30190060
Bianchi, M., G. Marom, R. P. Ghosh, et al. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18:435–451, 2019.
doi: 10.1007/s10237-018-1094-8
pubmed: 30460623
Jilaihawi, H., M. Chen, J. Webb, et al. A bicuspid aortic valve imaging classification for the TAVR era. JACC Cardiovasc. Imaging. 9:1145–1158, 2016.
doi: 10.1016/j.jcmg.2015.12.022
pubmed: 27372022
Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. 100:1591–1599, 2012.
doi: 10.1002/jbm.a.34099
Reza, S., M. Bianchi, B. Kovarovic, et al. A computational framework for post-TAVR cardiac conduction abnormality (CCA) risk assessment in patient-specific anatomy. Artif. Organs. 46(7):1306–1317, 2022.
doi: 10.1111/aor.14189
Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.
doi: 10.1115/1.1800557
pubmed: 15648819
Tzamtzis, S., J. Viquerat, J. Yap, M. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.
doi: 10.1016/j.medengphy.2012.04.009
pubmed: 22640661
Wang, Q. Patient-Specific Finite Element Modeling of Biomechanical Interaction in Transcatheter Aortic Valve Implantation. Atlanta: Georgia Institute of Technology, 2015.
Aggarwal, A., G. Ferrari, E. Joyce, et al. Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease. Ann. Biomed. Eng. 42:986–998, 2014.
doi: 10.1007/s10439-014-0973-0
pubmed: 24488233
pmcid: 4364391
Martin, G. P., M. Sperrin, R. Bagur, et al. Pre-implantation balloon aortic valvuloplasty and clinical outcomes following transcatheter aortic valve implantation: a propensity score analysis of the UK registry. J. Am. Heart Assoc.6:e004695, 2017.
doi: 10.1161/JAHA.116.004695
pubmed: 28214795
pmcid: 5523768