A

Adaptive adjustment Magnetic resonance imaging Opinion-unaware Real super-resolution

Journal

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
ISSN: 1879-0771
Titre abrégé: Comput Med Imaging Graph
Pays: United States
ID NLM: 8806104

Informations de publication

Date de publication:
07 2023
Historique:
received: 25 02 2023
revised: 11 05 2023
accepted: 11 05 2023
medline: 5 6 2023
pubmed: 25 5 2023
entrez: 24 5 2023
Statut: ppublish

Résumé

High-quality and high-resolution magnetic resonance (MR) images can provide more details for diagnosis and analyses. Recently, MR images guided neurosurgery has become an emerging technique in clinics. Unlike other medical imaging techniques, it is impossible to achieve both real-time imaging and high image quality in MR imaging. The real-time performance is closely related to the nuclear magnetic equipment itself as well as the collection strategy of the k space data. Optimizing the imaging time cost via the corresponding algorithm is harder than enhancing image quality. Further, in reconstructing low-resolution and noise-rich MR images, getting relatively high-definition and resolution MR images as references are difficult or impossible. In addition, the existing methods are restricted in learning the controllable functions under the supervision of known degradation types and levels. As a result, severely bad results are inevitable when the modeling assumptions are far apart from the actual situation. To address these problems, we propose a novel adaptive adjustment method based on real MR images via opinion-unaware measurements for real super-resolution (A

Identifiants

pubmed: 37224741
pii: S0895-6111(23)00065-4
doi: 10.1016/j.compmedimag.2023.102247
pii:
doi:

Substances chimiques

Cytokine TWEAK 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

102247

Informations de copyright

Copyright © 2023. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Yanding Qin (Y)

College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.

Jinbin Hu (J)

College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.

Jianda Han (J)

College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China. Electronic address: hanjianda@nankai.edu.cn.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH