Programming inactive RNA-binding small molecules into bioactive degraders.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 11 08 2021
accepted: 17 04 2023
medline: 2 6 2023
pubmed: 25 5 2023
entrez: 24 5 2023
Statut: ppublish

Résumé

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L

Identifiants

pubmed: 37225982
doi: 10.1038/s41586-023-06091-8
pii: 10.1038/s41586-023-06091-8
pmc: PMC10232370
doi:

Substances chimiques

2-5A-dependent ribonuclease EC 3.1.26.-
MicroRNAs 0
MIRN155 microRNA, human 0
RNA, Messenger 0
Endoribonucleases EC 3.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

169-179

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Costales, M. G. et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc. Natl Acad. Sci. USA 117, 2406–2411 (2020).
pubmed: 31964809 pmcid: 7007575 doi: 10.1073/pnas.1914286117
Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).
pubmed: 19239895 pmcid: 2866189 doi: 10.1016/j.cell.2009.02.011
Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol. 43, 78–89 (2015).
pubmed: 25385330 doi: 10.1177/0192623314551840
Lenartowicz, E. et al. Antisense oligonucleotides targeting influenza A segment 8 henomic RNA inhibit viral replication. Nucleic Acid Ther. 26, 277–285 (2016).
pubmed: 27463680 pmcid: 5067832 doi: 10.1089/nat.2016.0619
Mandal, M. & Breaker, R. R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).
pubmed: 15173824 doi: 10.1038/nrm1403
Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).
pubmed: 12410317 doi: 10.1038/nature01145
Rizvi, N. F. et al. Targeting RNA with small molecules: identification of selective, RNA-binding small molecules occupying drug-like chemical space. SLAS Discov. 25, 384–396 (2020).
pubmed: 31701793 doi: 10.1177/2472555219885373
Costales, M. G., Childs-Disney, J. L., Haniff, H. S. & Disney, M. D. How we think about targeting RNA with small molecules. J. Med. Chem. 63, 8880–8900 (2020).
pubmed: 32212706 pmcid: 7486258 doi: 10.1021/acs.jmedchem.9b01927
Grigalunas, M., Brakmann, S. & Waldmann, H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 144, 3314–3329 (2022).
pubmed: 35188375 pmcid: 8895405 doi: 10.1021/jacs.1c11270
Wicks, S. L. & Hargrove, A. E. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods 167, 3–14 (2019).
pubmed: 31051253 pmcid: 6756977 doi: 10.1016/j.ymeth.2019.04.018
Velagapudi, S. P. et al. Approved anti-cancer drugs target oncogenic non-coding RNAs. Cell Chem. Biol. 25, 1086–1094 (2018).
pubmed: 30251629 pmcid: 6334646 doi: 10.1016/j.chembiol.2018.05.015
Disney, M. D. Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. J. Am. Chem. Soc. 141, 6776–6790 (2019).
pubmed: 30896935 pmcid: 6541398 doi: 10.1021/jacs.8b13419
Velagapudi, S. P. et al. Defining RNA-small molecule affinity landscapes enables design of a small molecule inhibitor of an oncogenic concoding RNA. ACS Cent. Sci. 3, 205–216 (2017).
pubmed: 28386598 pmcid: 5364451 doi: 10.1021/acscentsci.7b00009
Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015).
pubmed: 26052348 pmcid: 4456712 doi: 10.1186/s13321-015-0069-3
Haniff, H. S. et al. Design of a small molecule that stimulates vascular endothelial growth factor A enabled by screening RNA fold–small molecule interactions. Nat. Chem. 12, 952–961 (2020).
pubmed: 32839603 pmcid: 7571259 doi: 10.1038/s41557-020-0514-4
Disney, M. D. et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem. Biol. 11, 1720–1728 (2016).
pubmed: 27097021 pmcid: 4912454 doi: 10.1021/acschembio.6b00001
Morgan, B. S., Forte, J. E., Culver, R. N., Zhang, Y. & Hargrove, A. E. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Ed. Engl. 56, 13498–13502 (2017).
pubmed: 28810078 pmcid: 5752130 doi: 10.1002/anie.201707641
Liu, B. et al. Analysis of secondary structural elements in human microRNA hairpin precursors. BMC Bioinform. 17, 112 (2016).
doi: 10.1186/s12859-016-0960-6
Han, Y. et al. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343, 1244–1248 (2014).
pubmed: 24578532 pmcid: 4731867 doi: 10.1126/science.1249845
Wreschner, D. H., McCauley, J. W., Skehel, J. J. & Kerr, I. M. Interferon action—sequence specificity of the ppp(A2′p)
pubmed: 6162102 doi: 10.1038/289414a0
Floyd-Smith, G., Slattery, E. & Lengyel, P. Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate-dependent endonuclease. Science 212, 1030–1032 (1981).
pubmed: 6165080 doi: 10.1126/science.6165080
Le Roy, F. et al. The 2–5A/RNase L/RNase L inhibitor (RNI) pathway regulates mitochondrial mRNAs stability in interferon α-treated H9 cells. J. Biol. Chem. 276, 48473–48482 (2001).
pubmed: 11585831 doi: 10.1074/jbc.M107482200
Rühling, A., Galla, H. J. & Glorius, F. A remarkably simple hybrid surfactant-NHC ligand, its gold-complex, and application in micellar catalysis. Chem. Eur. J. 21, 12291–12294 (2015).
pubmed: 26284947 doi: 10.1002/chem.201502542
Wang, D. et al. A remarkably simple class of imidazolium-based lipids and their biological properties. Chem. Eur. J. 21, 15123–15126 (2015).
pubmed: 26332168 doi: 10.1002/chem.201502333
Guedes, J. R. et al. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum. Mol. Genet. 23, 6286–6301 (2014).
pubmed: 24990149 doi: 10.1093/hmg/ddu348
Jiang, S. et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010).
pubmed: 20354188 doi: 10.1158/0008-5472.CAN-09-4250
Guan, L. & Disney, M. D. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions. Angew. Chem. Int. Ed. Engl. 52, 10010–10013 (2013).
pubmed: 23913698 doi: 10.1002/anie.201301639
Zheng, R. et al. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem. Biophys. Res. Commun. 498, 1002–1008 (2018).
pubmed: 29550489 doi: 10.1016/j.bbrc.2018.03.104
Velagapudi, S. P., Li, Y. & Disney, M. D. A cross-linking approach to map small molecule-RNA binding sites in cells. Bioorg. Med. Chem. Lett. 29, 1532–1536 (2019).
pubmed: 30987892 pmcid: 6598432 doi: 10.1016/j.bmcl.2019.04.001
Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).
pubmed: 35042991 pmcid: 8765495 doi: 10.1038/s41573-021-00371-6
Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).
pubmed: 31178587 pmcid: 6600871 doi: 10.1038/s41589-019-0294-6
Bassi, Z. I. et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol. 13, 2862–2867 (2018).
pubmed: 30200762 doi: 10.1021/acschembio.8b00705
Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39, 5692–5703 (2011).
pubmed: 21447562 pmcid: 3141258 doi: 10.1093/nar/gkr148
Tang, S. et al. Sweating the small stuff: microRNAs and genetic changes define pancreatic cancer. Pancreas 42, 740–759 (2013).
pubmed: 23774697 pmcid: 4086428 doi: 10.1097/MPA.0b013e3182854ab0
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
pubmed: 26267216 pmcid: 4532895 doi: 10.7554/eLife.05005
Johansson, J. et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 32, 5614–5624 (2013).
pubmed: 23955085 pmcid: 3898103 doi: 10.1038/onc.2013.322
Kong, W. et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33, 679–689 (2014).
pubmed: 23353819 doi: 10.1038/onc.2012.636
Mattiske, S., Suetani, R. J., Neilsen, P. M. & Callen, D. F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1236–1243 (2012).
pubmed: 22736789 doi: 10.1158/1055-9965.EPI-12-0173
Nanbru, C. et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J. Biol. Chem. 272, 32061–32066 (1997).
pubmed: 9405401 doi: 10.1074/jbc.272.51.32061
Stoneley, M. et al. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol. Cell. Biol. 20, 1162–1169 (2000).
pubmed: 10648601 pmcid: 85234 doi: 10.1128/MCB.20.4.1162-1169.2000
Lee, A. S., Kranzusch, P. J. & Cate, J. H. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111–114 (2015).
pubmed: 25849773 pmcid: 4603833 doi: 10.1038/nature14267
Lee, A. S., Kranzusch, P. J., Doudna, J. A. & Cate, J. H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536, 96–99 (2016).
pubmed: 27462815 pmcid: 5003174 doi: 10.1038/nature18954
Andrews, R. A.-O., Roche, J. & Moss, W. A.-O. ScanFold: an approach for genome-wide discovery of local RNA structural elements-applications to Zika virus and HIV. PeerJ 6, e6136 (2018).
pubmed: 30627482 pmcid: 6317755 doi: 10.7717/peerj.6136
Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E. & van Diest, P. J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 37, 668–674 (2006).
pubmed: 16733206 doi: 10.1016/j.humpath.2006.01.022
Zhang, Y. et al. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7, 145 (2007).
pubmed: 17672916 pmcid: 1959235 doi: 10.1186/1471-2407-7-145
Ferrara, C. et al. Ki-67 and c-jun expression in pancreatic cancer: a prognostic marker? Oncol. Rep. 6, 1117–1122 (1999).
pubmed: 10425312
Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764–776 (2002).
pubmed: 12360279 doi: 10.1038/nrc904
Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).
pubmed: 26382145 pmcid: 4592441 doi: 10.1158/2159-8290.CD-15-0507
Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).
pubmed: 26035625 pmcid: 4548256 doi: 10.1021/acschembio.5b00216
Boone David, N., Qi, Y., Li, Z. & Hann Stephen, R. Egr1 mediates p53-independent c-Myc–induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc. Natl Acad. Sci. USA 108, 632–637 (2011).
pubmed: 21187408 doi: 10.1073/pnas.1008848108
Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).
pubmed: 12695333 pmcid: 196049 doi: 10.1101/gad.1067003
Dang, C. V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).
pubmed: 16904903 doi: 10.1016/j.semcancer.2006.07.014
Kim, J., Lee, J.-H. & Iyer, V. R. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS ONE 3, e1798 (2008).
pubmed: 18335064 pmcid: 2258436 doi: 10.1371/journal.pone.0001798
Mimura, I. et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell. Biol. 32, 3018–3032 (2012).
pubmed: 22645302 pmcid: 3434521 doi: 10.1128/MCB.06643-11
Seitz, V. et al. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS ONE 6, e26837 (2011).
pubmed: 22102868 pmcid: 3213110 doi: 10.1371/journal.pone.0026837
Zhang, P. et al. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J. Am. Chem. Soc. 143, 13044–13055 (2021).
pubmed: 34387474 pmcid: 9264281 doi: 10.1021/jacs.1c02248
Tran, T. & Disney, M. D. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations. Nat. Commun. 3, 1125 (2012).
pubmed: 23047683 doi: 10.1038/ncomms2119
Rzuczek, S. G., Southern, M. R. & Disney, M. D. Studying a drug-like, RNA-focused small molecule library identifies compounds that inhibit RNA toxicity in myotonic dystrophy. ACS Chem. Biol. 10, 2706–2715 (2015).
pubmed: 26414664 pmcid: 4903160 doi: 10.1021/acschembio.5b00430

Auteurs

Yuquan Tong (Y)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Yeongju Lee (Y)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Xiaohui Liu (X)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Jessica L Childs-Disney (JL)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Blessy M Suresh (BM)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Raphael I Benhamou (RI)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Chunying Yang (C)

Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Weimin Li (W)

Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Matthew G Costales (MG)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Hafeez S Haniff (HS)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Sonja Sievers (S)

Max Planck Institute of Molecular Physiology, Dortmund, Germany.
Compound Management and Screening Center, Dortmund, Germany.

Daniel Abegg (D)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Tristan Wegner (T)

Organisch-Chemisches Institut, University of Münster, Münster, Germany.

Tiffany O Paulisch (TO)

Organisch-Chemisches Institut, University of Münster, Münster, Germany.

Elizabeth Lekah (E)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Maison Grefe (M)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Gogce Crynen (G)

Bioinformatics and Statistics Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Montina Van Meter (M)

Histology Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Tenghui Wang (T)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Quentin M R Gibaut (QMR)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

John L Cleveland (JL)

Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Alexander Adibekian (A)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

Frank Glorius (F)

Organisch-Chemisches Institut, University of Münster, Münster, Germany. glorius@uni-muenster.de.

Herbert Waldmann (H)

Max Planck Institute of Molecular Physiology, Dortmund, Germany. herbert.waldmann@mpi-dortmund.mpg.de.
Compound Management and Screening Center, Dortmund, Germany. herbert.waldmann@mpi-dortmund.mpg.de.
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. herbert.waldmann@mpi-dortmund.mpg.de.

Matthew D Disney (MD)

Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA. disney@scripps.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH