Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound.
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
29
10
2022
accepted:
11
04
2023
medline:
1
6
2023
pubmed:
26
5
2023
entrez:
25
5
2023
Statut:
ppublish
Résumé
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Identifiants
pubmed: 37231250
doi: 10.1038/s42255-023-00804-z
pii: 10.1038/s42255-023-00804-z
pmc: PMC10229429
doi:
Substances chimiques
TRPM2 protein, mouse
0
TRPM Cation Channels
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
789-803Subventions
Organisme : NIMH NIH HHS
ID : UG3 MH126861
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB030102
Pays : United States
Organisme : NIH HHS
ID : DP5 OD028125
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116981
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB027223
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Storey, K. B. Out cold: biochemical regulation of mammalian hibernation – a mini-review. Gerontology 56, 220–230 (2010).
pubmed: 19602865
Hock, R. J. The potential application of hibernation to space travel. Aerosp. Med. 31, 485–489 (1960).
pubmed: 14402208
Cerri, M. Consciousness in hibernation and synthetic torpor. J. Integr. Neurosci. 16, S19–S26 (2017).
pubmed: 29125496
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).
Cerri, M., Hitrec, T., Luppi, M. & Amici, R. Be cool to be far: exploiting hibernation for space exploration. Neurosci. Biobehav. Rev. 128, 218–232 (2021).
pubmed: 34144115
Cerri, M. et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space Res. 11, 1–9 (2016).
Dawe, A. R. & Spurrier, W. A. Hibernation induced in ground squirrels by blood transfusion. Science 163, 298–299 (1969).
pubmed: 5762611
Bouma, H. R. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell. Physiol. 227, 1285–1290 (2012).
pubmed: 21618525
Blackstone, E., Morrison, M. & Roth, M. B. H
pubmed: 15845845
Drew, K. L. et al. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J. Neurochem. 102, 1713–1726 (2007).
pubmed: 17555547
pmcid: 3600610
Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).
pubmed: 32528180
pmcid: 7449701
Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).
pubmed: 32528181
Cerri, M. et al. The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J. Neurosci. 33, 2984–2993 (2013).
pubmed: 23407956
pmcid: 6619194
Tupone, D., Madden, C. J. & Morrison, S. F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J. Neurosci. 33, 14512–14525 (2013).
pubmed: 24005302
pmcid: 3761054
Zhang, Z. et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat. Commun. 11, 1–14 (2020).
Legon, W. et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 17, 322–329 (2014).
pubmed: 24413698
Elias, W. J. et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 375, 730–739 (2016).
pubmed: 27557301
Tufail, Y. et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66, 681–694 (2010).
pubmed: 20547127
Pang, N. et al. Ultrasound deep brain stimulation modulates body temperature in mice. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 1851–1857 (2022).
pubmed: 35788458
Folloni, D. et al. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. Sci. Adv. 7, eabg7700 (2021).
pubmed: 34910510
pmcid: 8673758
Kubanek, J. et al. Remote, brain region-specific control of choice behavior with ultrasonic waves. Sci. Adv. 6, eaaz4193 (2020).
pubmed: 32671207
pmcid: 7314556
Fomenko, A. et al. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour. eLife 9, e54497 (2020).
pubmed: 33236981
pmcid: 7728443
Shi, Z. et al. Human torpor: translating insights from nature into manned deep space expedition. Biol. Rev. 96, 642–672 (2021).
pubmed: 33314677
Ambler, M., Hitrec, T., Wilson, A., Cerri, M. & Pickering, A. Neurons in the dorsomedial hypothalamus promote, prolong, and deepen torpor in the mouse. J. Neurosci. 42, 4267–4277 (2022).
pubmed: 35440490
pmcid: 9145229
Sunagawa, G. A. & Takahashi, M. Hypometabolism during daily torpor in mice is dominated by reduction in the sensitivity of the thermoregulatory system. Sci. Rep. 6, 37011 (2016).
pubmed: 27845399
pmcid: 5109469
Snapp, B. D. & Heller, H. C. Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol. Zool. 54, 297–307 (1981).
Iliff, B. W. & Swoap, S. J. Central adenosine receptor signaling is necessary for daily torpor in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, 477–484 (2012).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).
pubmed: 30385464
pmcid: 6482113
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943
Qiu, Z. et al. The mechanosensitive ion channel piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience 21, 448–457 (2019).
pubmed: 31707258
pmcid: 6849147
Hoffman, B. U. et al. Focused ultrasound excites action potentials in mammalian peripheral neurons in part through the mechanically gated ion channel PIEZO2. Proc. Natl Acad. Sci. USA 119, e2115821119 (2022).
pubmed: 35580186
pmcid: 9173751
Oh, S.-J. et al. Ultrasonic neuromodulation via astrocytic TRPA1. Curr. Biol. 29, 3386–3401 (2019).
pubmed: 31588000
Yang, Y. et al. Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation. Brain Stimul. 14, 790–800 (2021).
pubmed: 33989819
pmcid: 8995105
Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).
pubmed: 35078979
pmcid: 8789820
Roh, E. & Kim, M. S. Brain regulation of energy metabolism. Endocrinol. Metab. 31, 519–524 (2016).
Zhao, Z. D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl Acad. Sci. USA 114, 2042–2047 (2017).
pubmed: 28053227
pmcid: 5338448
Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).
pubmed: 24630813
pmcid: 4016184
Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).
pubmed: 23063128
pmcid: 3782081
Oelkrug, R., Heldmaier, G. & Meyer, C. W. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J. Comp. Physiol. B. 181, 137–145 (2011).
pubmed: 20680295
Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).
pubmed: 14977403
Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).
pubmed: 27562954
pmcid: 7612276
Kashio, M. & Tominaga, M. The TRPM2 channel: a thermo-sensitive metabolic sensor. Channels 11, 426–433 (2017).
pubmed: 28633002
pmcid: 5626354
Bartók, Á. & Csanády, L. Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. Proc. Natl Acad. Sci. USA 119, e2212378119 (2022).
pubmed: 36409885
pmcid: 9881722
Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).
pubmed: 19357406
pmcid: 2859951
Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE 8, e85157 (2013).
pubmed: 24386461
pmcid: 3875542
Soto, M. et al. Pyruvate induces torpor in obese mice. Proc. Natl Acad. Sci. USA 115, 810–815 (2018).
pubmed: 29311303
pmcid: 5789941
Zhang, J., Kaasik, K., Blackburn, M. R. & Cheng, C. L. Constant darkness is a circadian metabolic signal in mammals. Nature 439, 340–343 (2006).
pubmed: 16421573
Oeltgen, P. R., Nilekani, S. P., Nuchols, P. A., Spurrier, W. A. & Su, T. P. Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci. 43, 1565–1574 (1988).
pubmed: 2904105
Jinka, T. R., Tøien, O. & Drew, K. L. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J. Neurosci. 31, 10752–10758 (2011).
pubmed: 21795527
pmcid: 3325781
Zakharova, N. M., Tarahovsky, Y. S., Komelina, N. P., Fadeeva, I. S. & Kovtun, A. L. Long-term pharmacological torpor of rats with feedback-controlled drug administration. Life Sci. Space Res. 28, 18–21 (2021).
Truong, D. H., Eghbal, M. A., Hindmarsh, W., Roth, S. H. & O’Brien, P. J. Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab. Rev. 38, 733–744 (2006).
pubmed: 17145698
Mohammadjavadi, M. et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12, 901–910 (2019).
pubmed: 30880027
pmcid: 6592746
Reynolds, R. P., Kinard, W. L., Degraff, J. J., Leverage, N. & Norton, J. N. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab. Anim. Sci. 49, 592–597 (2010).
pubmed: 20858361
pmcid: 2949429
Verhagen, L. et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 8, e40541 (2019).
pubmed: 30747105
pmcid: 6372282
London, T. D. et al. Coordinated ramping of dorsal striatal pathways preceding food approach and consumption. J. Neurosci. 38, 3547–3558 (2018).
pubmed: 29523623
pmcid: 5895041
Yang, Y. et al. Cavitation dose painting for focused ultrasound-induced blood–brain barrier disruption. Sci. Rep. 9, 1–10 (2019).
Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329 (2017).
pubmed: 29024657
Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 1–11 (2011).
Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).
pubmed: 20813920
pmcid: 3062430
Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).
pubmed: 14654832
Allen Institute for Brain Science. Allen Brain Atlas; http://mouse.brain-map.org/