LIKE EARLY STARVATION 1 and EARLY STARVATION 1 promote and stabilize amylopectin phase transition in starch biosynthesis.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
26 05 2023
26 05 2023
Historique:
medline:
29
5
2023
pubmed:
26
5
2023
entrez:
26
5
2023
Statut:
ppublish
Résumé
Starch, the most abundant carbohydrate reserve in plants, primarily consists of the branched glucan amylopectin, which forms semi-crystalline granules. Phase transition from a soluble to an insoluble form depends on amylopectin architecture, requiring a compatible distribution of glucan chain lengths and a branch-point distribution. Here, we show that two starch-bound proteins, LIKE EARLY STARVATION 1 (LESV) and EARLY STARVATION 1 (ESV1), which have unusual carbohydrate-binding surfaces, promote the phase transition of amylopectin-like glucans, both in a heterologous yeast system expressing the starch biosynthetic machinery and in
Identifiants
pubmed: 37235646
doi: 10.1126/sciadv.adg7448
pmc: PMC10219597
doi:
Substances chimiques
Amylopectin
9037-22-3
Starch
9005-25-8
Glucans
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eadg7448Références
Nat Protoc. 2007;2(1):31-4
pubmed: 17401334
Cell Mol Life Sci. 2016 Jul;73(14):2781-807
pubmed: 27166931
Protein Sci. 2018 Sep;27(9):1717-1722
pubmed: 30168221
Arch Biochem Biophys. 2014 Nov 15;562:9-21
pubmed: 25107532
BMC Biol. 2022 Sep 24;20(1):207
pubmed: 36153520
Methods Mol Biol. 2011;775:387-410
pubmed: 21863455
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Plant Physiol. 2014 Jun 25;165(4):1457-1474
pubmed: 24965177
Plant J. 2005 Mar;41(6):815-30
pubmed: 15743447
Plant Cell. 1998 Oct;10(10):1699-712
pubmed: 9761796
Plant Physiol. 2000 Apr;122(4):989-97
pubmed: 10759494
Plant Cell Physiol. 2019 Dec 1;60(12):2692-2706
pubmed: 31397873
J Synchrotron Radiat. 2008 Jul;15(Pt 4):420-2
pubmed: 18552437
Metab Eng. 2012 Mar;14(2):104-11
pubmed: 22326477
Plant Cell. 2008 Dec;20(12):3448-66
pubmed: 19074683
J Synchrotron Radiat. 2012 Sep;19(Pt 5):831-5
pubmed: 22898965
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
Curr Opin Plant Biol. 2012 Jun;15(3):282-92
pubmed: 22541711
Plant J. 2018 Jul;95(1):126-137
pubmed: 29681129
Curr Opin Biotechnol. 2011 Apr;22(2):271-80
pubmed: 21185717
Cell. 1996 Aug 9;86(3):349-52
pubmed: 8756717
ACS Synth Biol. 2015 Sep 18;4(9):975-86
pubmed: 25871405
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444
pubmed: 34791371
Front Plant Sci. 2018 Jun 15;9:746
pubmed: 29963063
Plant Cell. 2009 Jan;21(1):334-46
pubmed: 19141707
Plant Cell. 2020 Aug;32(8):2543-2565
pubmed: 32471861
Plant Physiol. 2018 Jan;176(1):566-581
pubmed: 29133376
Plant Cell. 2001 Aug;13(8):1907-18
pubmed: 11487701
Elife. 2016 Nov 22;5:
pubmed: 27871361
Plant Physiol. 2005 Jan;137(1):242-52
pubmed: 15618411
Plant Cell. 2016 Jun;28(6):1472-89
pubmed: 27207856
Front Plant Sci. 2021 Jul 23;12:628948
pubmed: 34367195
Nat Commun. 2021 Nov 26;12(1):6944
pubmed: 34836943
Commun Inf Syst. 2021;21(1):147-163
pubmed: 34366717
J Am Chem Soc. 2009 Dec 23;131(50):18129-38
pubmed: 19928848
Plant Physiol. 2005 May;138(1):184-95
pubmed: 15849301
Proc Natl Acad Sci U S A. 2002 May 14;99(10):7166-71
pubmed: 12011472
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346
pubmed: 27630371
Nat Biotechnol. 1998 May;16(5):473-7
pubmed: 9592398