Magnetic resonance elastography-derived stiffness: potential imaging biomarker for differentiation of benign and malignant pancreatic masses.


Journal

Abdominal radiology (New York)
ISSN: 2366-0058
Titre abrégé: Abdom Radiol (NY)
Pays: United States
ID NLM: 101674571

Informations de publication

Date de publication:
08 2023
Historique:
received: 21 03 2023
accepted: 08 05 2023
revised: 06 05 2023
medline: 12 7 2023
pubmed: 27 5 2023
entrez: 26 5 2023
Statut: ppublish

Résumé

This study sought to determine the diagnostic performance of magnetic resonance elastography (MRE) for pancreatic solid masses, compared with diffusion-weighted imaging (DWI) and serum CA19-9, to establish a threshold for differentiating between pancreatic ductal adenocarcinoma (PDAC) and benign tumors in pancreas. Between July 2021 to January 2023, 75 adult patients confirmed with pancreatic solid tumors were enrolled in this prospective and consecutive study. All patients underwent MRE and DWI examinations that were both performed with a spin echo-EPI sequence. Stiffness maps and apparent diffusion coefficient (ADC) maps were generated, with MRE-derived mass stiffness and stiffness ratio (computing as the ratio of mass stiffness to the parenchyma stiffness) and DWI-derived ADC values obtained by placing regions of interest over the focal tumors on stiffness and ADC maps. Further analysis of comparing diagnostic performances was assessed by calculating the area under ROC curves. PDAC had significantly higher tumor stiffness [3.795 (2.879-4.438) kPa vs. 2.359 (2.01-3.507) kPa, P = 0.0003], stiffness ratio [1.939 (1.562-2.511) vs. 1.187 (1.031-1.453), P < 0.0001] and serum CA19-9 level [276 (31.73-1055) vs. 10.45 (7.825-14.15), P < 0.0001] than other pancreatic masses. Mass stiffness, stiffness ratio and serum CA19-9 showed good diagnostic performance for differentiation with AUC of 0.7895, 0.8392 and 0.9136 respectively. The sensitivity/specificity/positive predictive value/negative predictive value for differentiating malignant from benign pancreatic tumors with mass stiffness (cutoff, > 2.8211 kPa) and stiffness ratio (cutoff, > 1.5117) were 78.4/66.7/82.9/60% and 77.8/83.3/90.3/65.2% respectively. The combined performance of Mass stiffness, stiffness ratio and serum CA19-9 got an AUC of 0.9758. MRE holds excellent clinical potential in discriminating pancreatic ductal adenocarcinoma from other pancreatic solid masses according to their mechanical properties.

Identifiants

pubmed: 37237155
doi: 10.1007/s00261-023-03956-4
pii: 10.1007/s00261-023-03956-4
doi:

Substances chimiques

CA-19-9 Antigen 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2604-2614

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008-2020. doi: https://doi.org/10.1016/S0140-6736(20)30974-0
doi: 10.1016/S0140-6736(20)30974-0
Singhi AD, Koay EJ, Chari ST, Maitra A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology. 2019;156(7):2024-2040. doi: https://doi.org/10.1053/j.gastro.2019.01.259
doi: 10.1053/j.gastro.2019.01.259 pubmed: 30721664
Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic Ductal Adenocarcinoma Radiology Reporting Template: Consensus Statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 2014;270(1):248-260. doi: https://doi.org/10.1148/radiol.13131184
doi: 10.1148/radiol.13131184 pubmed: 24354378
Camara SN, Yin T, Yang M, et al. High risk factors of pancreatic carcinoma. J Huazhong Univ Sci Technol [Med Sci]. 2016;36(3):295-304. doi: https://doi.org/10.1007/s11596-016-1583-x
doi: 10.1007/s11596-016-1583-x
Valls C, Andía E, Sanchez A, et al. Dual-Phase Helical CT of Pancreatic Adenocarcinoma: Assessment of Resectability Before Surgery. American Journal of Roentgenology. 2002;178(4):821-826. doi: https://doi.org/10.2214/ajr.178.4.1780821
doi: 10.2214/ajr.178.4.1780821 pubmed: 11906855
Luz LP. Applications of endoscopic ultrasound in pancreatic cancer. WJG. 2014;20(24):7808. doi: https://doi.org/10.3748/wjg.v20.i24.7808
doi: 10.3748/wjg.v20.i24.7808 pubmed: 24976719 pmcid: 4069310
Iglesias-García J, Lindkvist B, Lariño-Noia J, Domínguez-Muñoz JE. The role of endoscopic ultrasound (EUS) in relation to other imaging modalities in the differential diagnosis between mass forming chronic pancreatitis, autoimmune pancreatitis and ductal pancreatic adenocarcinoma. Rev esp enferm dig. 2012;104(6):315-321. doi: https://doi.org/10.4321/S1130-01082012000600006
doi: 10.4321/S1130-01082012000600006 pubmed: 22738702
Elsherif SB, Virarkar M, Javadi S, Ibarra-Rovira JJ, Tamm EP, Bhosale PR. Pancreatitis and PDAC: association and differentiation. Abdom Radiol. 2020;45(5):1324-1337. doi: https://doi.org/10.1007/s00261-019-02292-w
doi: 10.1007/s00261-019-02292-w
Beker K, Lee KS, Tsai LL, et al. Differentiation of pancreatic head ductal adenocarcinoma from inflammatory pancreatic pseudomass by MR cholangio-pancreatography: utility of the duct-interrupted, corona, and attraction signs. Abdom Radiol. 2019;44(12):4048-4056. doi: https://doi.org/10.1007/s00261-019-02155-4
doi: 10.1007/s00261-019-02155-4
Bittencourt LK, Matos C, Coutinho AC. Diffusion-Weighted Magnetic Resonance Imaging in the Upper Abdomen: Technical Issues and Clinical Applications. Magnetic Resonance Imaging Clinics of North America. 2011;19(1):111-131. doi: https://doi.org/10.1016/j.mric.2010.09.002
doi: 10.1016/j.mric.2010.09.002 pubmed: 21129638
Lee NK. Diffusion-weighted imaging of biliopancreatic disorders: Correlation with conventional magnetic resonance imaging. WJG. 2012;18(31):4102. doi: https://doi.org/10.3748/wjg.v18.i31.4102
doi: 10.3748/wjg.v18.i31.4102 pubmed: 22919242 pmcid: 3422790
Chang JC, Kundranda M. Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma. IJMS. 2017;18(3):667. doi: https://doi.org/10.3390/ijms18030667
doi: 10.3390/ijms18030667 pubmed: 28335509 pmcid: 5372679
Ding Y, Tan Q, Mao W, et al. Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI? Eur Radiol. 2019;29(12):6930-6939. doi: https://doi.org/10.1007/s00330-019-06240-6
doi: 10.1007/s00330-019-06240-6 pubmed: 31161315
Lee S, Kim SH, Hwang JA, Lee JE, Ha SY. Pre-operative ADC predicts early recurrence of HCC after curative resection. Eur Radiol. 2019;29(2):1003-1012. doi: https://doi.org/10.1007/s00330-018-5642-5
doi: 10.1007/s00330-018-5642-5 pubmed: 30027408
Robertis RD. Diffusion-weighted imaging of pancreatic cancer. WJR. 2015;7(10):319. doi: https://doi.org/10.4329/wjr.v7.i10.319
doi: 10.4329/wjr.v7.i10.319 pubmed: 26516428 pmcid: 4620112
Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves. Science. 1995;269(5232):1854-1857. doi: https://doi.org/10.1126/science.7569924
doi: 10.1126/science.7569924 pubmed: 7569924
Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: A prospective study. Hepatology. 2014;60(6):1920-1928. doi: https://doi.org/10.1002/hep.27362
doi: 10.1002/hep.27362 pubmed: 25103310
Tapper EB, Loomba R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD. Nat Rev Gastroenterol Hepatol. 2018;15(5):274-282. doi: https://doi.org/10.1038/nrgastro.2018.10
doi: 10.1038/nrgastro.2018.10 pubmed: 29463906 pmcid: 7504909
Bohte AE, de Niet A, Jansen L, et al. Non-invasive evaluation of liver fibrosis: a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C. Eur Radiol. 2014;24(3):638-648. doi: https://doi.org/10.1007/s00330-013-3046-0
doi: 10.1007/s00330-013-3046-0 pubmed: 24158528
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Progress in Nuclear Magnetic Resonance Spectroscopy. 2015;90-91:32-48. doi: https://doi.org/10.1016/j.pnmrs.2015.06.001
doi: 10.1016/j.pnmrs.2015.06.001 pubmed: 26592944
Yang JY, Qiu BS. The Advance of Magnetic Resonance Elastography in Tumor Diagnosis. Front Oncol. 2021;11:722703. doi: https://doi.org/10.3389/fonc.2021.722703
Balleyguier C, Lakhdar AB, Dunant A, Mathieu MC, Delaloge S, Sinkus R. Value of whole breast magnetic resonance elastography added to MRI for lesion characterization. NMR in Biomedicine. 2018;31(1):e3795. doi: https://doi.org/10.1002/nbm.3795
doi: 10.1002/nbm.3795
Hennedige TP, Hallinan JTPD, Leung FP, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur Radiol. 2016;26(2):398-406. doi: https://doi.org/10.1007/s00330-015-3835-8
doi: 10.1007/s00330-015-3835-8 pubmed: 26032879
Kim B, Kim SS, Cho SW, et al. Liver stiffness in magnetic resonance elastography is prognostic for sorafenib-treated advanced hepatocellular carcinoma. Eur Radiol. 2021;31(4):2507-2517. doi: https://doi.org/10.1007/s00330-020-07357-9
doi: 10.1007/s00330-020-07357-9 pubmed: 33033862
Sauer F, Fritsch A, Grosser S, et al. Whole tissue and single cell mechanics are correlated in human brain tumors. Soft Matter. 2021;17(47):10744-10752. doi: https://doi.org/10.1039/D1SM01291F
doi: 10.1039/D1SM01291F pubmed: 34787626 pmcid: 9386686
Sahebjavaher RS, Nir G, Honarvar M, et al. MR elastography of prostate cancer: quantitative comparison with histopathology and repeatability of methods: TRANSPERINEAL PROSTATE MRE: INITIAL PATIENT STUDY. NMR Biomed. Published online November 2014:n/a-n/a. doi: https://doi.org/10.1002/nbm.3218
Shi Y, Glaser KJ, Venkatesh SK, Ben-Abraham EI, Ehman RL. Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers: 3D MRE of the Pancreas. J Magn Reson Imaging. 2015;41(2):369-375. doi: https://doi.org/10.1002/jmri.24572
doi: 10.1002/jmri.24572 pubmed: 24497052
An H, Shi Y, Guo Q, Liu Y. Test–retest reliability of 3D EPI MR elastography of the pancreas. Clinical Radiology. 2016;71(10):1068.e7-1068.e12. doi: https://doi.org/10.1016/j.crad.2016.03.014
doi: 10.1016/j.crad.2016.03.014 pubmed: 27132114
Shi Y, Gao F, Li Y, et al. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction: a prospective study. Eur Radiol. 2018;28(3):936-945. doi: https://doi.org/10.1007/s00330-017-5062-y
doi: 10.1007/s00330-017-5062-y pubmed: 28986646
Snellings J. Solid fraction determines stiffness and viscosity in decellularized pancreatic tissues. Published online 2022.
Iglesias–Garcia J, Larino–Noia J, Abdulkader I, Forteza J, Dominguez–Munoz JE. Quantitative Endoscopic Ultrasound Elastography: An Accurate Method for the Differentiation of Solid Pancreatic Masses. Gastroenterology. 2010;139(4):1172-1180. doi: https://doi.org/10.1053/j.gastro.2010.06.059
doi: 10.1053/j.gastro.2010.06.059 pubmed: 20600020
Kim SY, Cho JH, Kim YJ, et al. Diagnostic efficacy of quantitative endoscopic ultrasound elastography for differentiating pancreatic disease: EUS elastography and pancreatic disease. Journal of Gastroenterology and Hepatology. 2017;32(5):1115-1122. doi: https://doi.org/10.1111/jgh.13649
doi: 10.1111/jgh.13649 pubmed: 27862278
Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25(9):1181-1192. doi: https://doi.org/10.1038/modpathol.2012.72
doi: 10.1038/modpathol.2012.72 pubmed: 22596100
Song Q, Shi Y, Gao F, et al. Feasibility and Reproducibility of Multifrequency Magnetic Resonance Elastography in Healthy and Diseased Pancreases. Magnetic Resonance Imaging. 2022;56(6):1769-1780. doi: https://doi.org/10.1002/jmri.28158
doi: 10.1002/jmri.28158
Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: Clinical features, diagnosis and medical treatment: Advances. Best Practice & Research Clinical Gastroenterology. 2012;26(6):737-753. doi: https://doi.org/10.1016/j.bpg.2012.12.003
doi: 10.1016/j.bpg.2012.12.003
Lee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: Usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging. 2008;28(4):928-936. doi: https://doi.org/10.1002/jmri.21508
doi: 10.1002/jmri.21508 pubmed: 18821618
Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37(3):544-555. doi: https://doi.org/10.1002/jmri.23731
doi: 10.1002/jmri.23731 pubmed: 23423795 pmcid: 3579218
Doblas S, Wagner M, Leitao HS, et al. Determination of Malignancy and Characterization of Hepatic Tumor Type With Diffusion-Weighted Magnetic Resonance Imaging: Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion–Derived Measurements. Investigative Radiology. 2013;48(10):722-728. doi: https://doi.org/10.1097/RLI.0b013e3182915912
doi: 10.1097/RLI.0b013e3182915912 pubmed: 23669588
Ichikawa S, Motosugi U, Ichikawa T, Sano K, Morisaka H, Araki T. Intravoxel incoherent motion imaging of focal hepatic lesions. J Magn Reson Imaging. 2013;37(6):1371-1376. doi: https://doi.org/10.1002/jmri.23930
doi: 10.1002/jmri.23930 pubmed: 23172819

Auteurs

Dingxia Liu (D)

Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China.

Jiejun Chen (J)

Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China.

Yunfei Zhang (Y)

Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China.

Yongming Dai (Y)

MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China.

Xiuzhong Yao (X)

Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China. zsyyyxz@163.com.
Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China. zsyyyxz@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH