Identification of Potential Biomarkers for Diagnosis of Patients with Methamphetamine Use Disorder.
RNA sequencing
methamphetamine
methamphetamine use disorder
peripheral biomarker
prediction model
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
12 May 2023
12 May 2023
Historique:
received:
18
04
2023
revised:
08
05
2023
accepted:
10
05
2023
medline:
29
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
The current method for diagnosing methamphetamine use disorder (MUD) relies on self-reports and interviews with psychiatrists, which lack scientific rigor. This highlights the need for novel biomarkers to accurately diagnose MUD. In this study, we identified transcriptome biomarkers using hair follicles and proposed a diagnostic model for monitoring the MUD treatment process. We performed RNA sequencing analysis on hair follicle cells from healthy controls and former and current MUD patients who had been detained in the past for illegal use of methamphetamine (MA). We selected candidate genes for monitoring MUD patients by performing multivariate analysis methods, such as PCA and PLS-DA, and PPI network analysis. We developed a two-stage diagnostic model using multivariate ROC analysis based on the PLS-DA method. We constructed a two-step prediction model for MUD diagnosis using multivariate ROC analysis, including 10 biomarkers. The first step model, which distinguishes non-recovered patients from others, showed very high accuracy (prediction accuracy, 98.7%). The second step model, which distinguishes almost-recovered patients from healthy controls, showed high accuracy (prediction accuracy, 81.3%). This study is the first report to use hair follicles of MUD patients and to develop a MUD prediction model based on transcriptomic biomarkers, which offers a potential solution to improve the accuracy of MUD diagnosis and may lead to the development of better pharmacological treatments for the disorder in the future.
Identifiants
pubmed: 37240016
pii: ijms24108672
doi: 10.3390/ijms24108672
pmc: PMC10218193
pii:
doi:
Substances chimiques
Methamphetamine
44RAL3456C
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Education
ID : NRF-2016R1A6A1A03011325
Organisme : Ministry of Education
ID : NRF-2020R1I1A1A01068108
Organisme : Ministry of Science ICT and Future Planning
ID : NRF-2022R1A2C1008787
Références
Drug Alcohol Depend. 2018 Nov 1;192:186-192
pubmed: 30266003
JAMA Psychiatry. 2015 Jul;72(7):631-2
pubmed: 25992540
Pharmaceutics. 2018 Jul 04;10(3):
pubmed: 29973564
Nat Biotechnol. 2010 Apr;28(4):322-4
pubmed: 20379172
Neuropsychopharmacology. 2001 Feb;24(2):97-129
pubmed: 11120394
Front Pharmacol. 2022 Sep 26;13:997701
pubmed: 36225577
Cereb Cortex. 2015 Sep;25(9):2370-82
pubmed: 24626607
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Front Cell Neurosci. 2014 Sep 25;8:307
pubmed: 25309333
Cereb Cortex. 2016 Feb;26(2):873-890
pubmed: 26582364
Front Psychiatry. 2018 Aug 31;9:368
pubmed: 30233420
FASEB J. 2009 May;23(5):1347-57
pubmed: 19126596
J Proteome Res. 2019 Nov 1;18(11):3913-3925
pubmed: 31525931
PLoS One. 2017 Jul 26;12(7):e0181695
pubmed: 28746361
Arch Pharm Res. 2021 Oct;44(9-10):890-901
pubmed: 34741727
Sci Rep. 2018 Aug 2;8(1):11584
pubmed: 30072748
Genome Biol. 2014;15(12):550
pubmed: 25516281
Addict Biol. 2018 Jan;23(1):327-336
pubmed: 27813228
Trends Mol Med. 2018 Feb;24(2):197-205
pubmed: 29397321
Schizophr Res. 2014 Mar;153(1-3):122-8
pubmed: 24529366
Neurobiol Dis. 2021 Jul;155:105395
pubmed: 34022367
Neuropsychopharmacology. 2010 Jan;35(1):217-38
pubmed: 19710631
Biol Psychiatry. 2015 Jul 15;78(2):116-25
pubmed: 25444170
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202
pubmed: 26953178
Ann Thorac Surg. 2005 Jan;79(1):16-20
pubmed: 15620907
Metabolomics. 2013 Apr;9(2):280-299
pubmed: 23543913
J Neurosci Res. 2012 Aug;90(8):1533-46
pubmed: 22411744
J Extracell Vesicles. 2021 Dec;10(14):e12177
pubmed: 34913274
Sci Rep. 2018 Jul 30;8(1):11420
pubmed: 30061674
Int J Mol Sci. 2020 Nov 23;21(22):
pubmed: 33238484
Expert Opin Investig Drugs. 2017 May;26(5):563-578
pubmed: 28351169
Trends Mol Med. 2018 Feb;24(2):109-120
pubmed: 29396146
Addiction. 2014 Sep;109(9):1489-500
pubmed: 24825486
Cochrane Database Syst Rev. 2018 Dec 22;12:CD011315
pubmed: 30577083
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Forensic Sci Int. 2009 Sep 10;190(1-3):16-8
pubmed: 19501481
EMBO J. 2016 Sep 15;35(18):2008-25
pubmed: 27497298
Forensic Sci Int. 2018 May;286:239-244
pubmed: 29602151
Brain Res Brain Res Rev. 1993 Sep-Dec;18(3):247-91
pubmed: 8401595
Expert Rev Clin Pharmacol. 2017 Mar;10(3):305-314
pubmed: 27927042
J Neural Transm (Vienna). 2010 Dec;117(12):1387-93
pubmed: 21069393
J Med Chem. 2016 Apr 28;59(8):3878-85
pubmed: 27054372
Addiction. 2010 Jan;105(1):146-54
pubmed: 19839966
Arch Pharm Res. 2020 Aug;43(8):798-807
pubmed: 32737848
J Addict Dis. 2014;33(3):253-65
pubmed: 25115166
Drug Metab Pharmacokinet. 2016 Feb;31(1):21-26
pubmed: 26613805