Acute Graft-versus-Host Disease: An Update on New Treatment Options.


Journal

Drugs
ISSN: 1179-1950
Titre abrégé: Drugs
Pays: New Zealand
ID NLM: 7600076

Informations de publication

Date de publication:
Jul 2023
Historique:
accepted: 05 05 2023
medline: 23 6 2023
pubmed: 29 5 2023
entrez: 29 5 2023
Statut: ppublish

Résumé

Acute graft-versus-host disease (GVHD) occurs in approximately 50% of patients and remains a primary driver of non-relapse and transplant-related mortality. The best treatment remains prevention with either in vivo or ex vivo T-cell depletion, with multiple strategies used worldwide based on factors such as institution preference, ability to perform graft manipulation, and ongoing clinical trials. Predicting patients at high risk for developing severe acute GVHD based on clinical and biomarker-based criteria allows for escalation or potential de-escalation of therapy. Modern therapies for treatment of the disease include JAK/STAT pathway inhibitors, which are standard of care in the second-line setting and are being investigated for upfront management of non-severe risk based on biomarkers. Salvage therapies beyond the second-line remain suboptimal. In this review, we will focus on the most clinically used GVHD prevention and treatment strategies, including the accumulating data on JAK inhibitors in both settings.

Identifiants

pubmed: 37247105
doi: 10.1007/s40265-023-01889-2
pii: 10.1007/s40265-023-01889-2
doi:

Substances chimiques

Janus Kinases EC 2.7.10.2
STAT Transcription Factors 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

893-907

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61. https://doi.org/10.1016/S0140-6736(09)60237-3 .
doi: 10.1016/S0140-6736(09)60237-3 pubmed: 19282026 pmcid: 2735047
Zeiser R, Blazar BR. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–79. https://doi.org/10.1056/NEJMra1609337 .
doi: 10.1056/NEJMra1609337 pubmed: 29171820 pmcid: 6034180
Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3(3):241–52. https://doi.org/10.1111/j.1365-2141.1957.tb05793.x .
doi: 10.1111/j.1365-2141.1957.tb05793.x pubmed: 13460193
Appelbaum FR. Haematopoietic cell transplantation as immunotherapy. Nature. 2001;411(6835):385–9. https://doi.org/10.1038/35077251 .
doi: 10.1038/35077251 pubmed: 11357147
Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007;25:139–70. https://doi.org/10.1146/annurev.immunol.25.022106.141606 .
doi: 10.1146/annurev.immunol.25.022106.141606 pubmed: 17129175
Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol. 2017;8:79. https://doi.org/10.3389/fimmu.2017.00079 .
doi: 10.3389/fimmu.2017.00079 pubmed: 28373870 pmcid: 5357769
Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019;10:1342. https://doi.org/10.3389/fimmu.2019.01342 .
doi: 10.3389/fimmu.2019.01342 pubmed: 31354695 pmcid: 6635579
Gooptu M, Koreth J. Translational and clinical advances in acute graft-versus-host disease. Haematologica. 2020;105(11):2550–60. https://doi.org/10.3324/haematol.2019.240309 .
doi: 10.3324/haematol.2019.240309 pubmed: 33054103 pmcid: 7604566
Billingham RE. The biology of graft-versus-host reactions. Harvey Lect. 1966;62:21–78.
pubmed: 4875305
Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4(5):371–80. https://doi.org/10.1038/nrc1365 .
doi: 10.1038/nrc1365 pubmed: 15122208
Jagasia M, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119(1):296–307. https://doi.org/10.1182/blood-2011-06-364265 .
doi: 10.1182/blood-2011-06-364265 pubmed: 22010102 pmcid: 3251233
MacMillan ML, et al. A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol Blood Marrow Transplant. 2015;21(4):761–7. https://doi.org/10.1016/j.bbmt.2015.01.001 .
doi: 10.1016/j.bbmt.2015.01.001 pubmed: 25585275 pmcid: 4359643
Martin PJ, et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18(8):1150–63. https://doi.org/10.1016/j.bbmt.2012.04.005 .
doi: 10.1016/j.bbmt.2012.04.005 pubmed: 22510384 pmcid: 3404151
Martin PJ. How I treat steroid-refractory acute graft-versus-host disease. Blood. 2020;135(19):1630–8. https://doi.org/10.1182/blood.2019000960 .
doi: 10.1182/blood.2019000960 pubmed: 32202630
Westin JR, et al. Steroid-refractory acute GVHD: predictors and outcomes. Adv Hematol. 2011;2011: 601953. https://doi.org/10.1155/2011/601953 .
doi: 10.1155/2011/601953 pubmed: 22110505 pmcid: 3216266
Toubai T, Magenau J. Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood. 2020;136(4):429–40. https://doi.org/10.1182/blood.2019000953 .
doi: 10.1182/blood.2019000953 pubmed: 32526035 pmcid: 7378454
Khoury HJ, et al. Improved survival after acute graft. Haematologica. 2017;102(5):958–66. https://doi.org/10.3324/haematol.2016.156356 .
doi: 10.3324/haematol.2016.156356 pubmed: 28302712 pmcid: 5477615
Malard F, Huang XJ, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia. 2020;34(5):1229–40. https://doi.org/10.1038/s41375-020-0804-2 .
doi: 10.1038/s41375-020-0804-2 pubmed: 32242050 pmcid: 7192843
Gooptu M, Antin JH. GVHD Prophylaxis 2020. Front Immunol. 2021;12: 605726. https://doi.org/10.3389/fimmu.2021.605726 .
doi: 10.3389/fimmu.2021.605726 pubmed: 33897681 pmcid: 8059368
Abboud R, et al. Insights into the role of the JAK/STAT signaling pathway in graft-. Ther Adv Hematol. 2020;11:2040620720914489. https://doi.org/10.1177/2040620720914489 .
doi: 10.1177/2040620720914489 pubmed: 32537114 pmcid: 7268158
Choi J, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9(10): e109799. https://doi.org/10.1371/journal.pone.0109799 .
doi: 10.1371/journal.pone.0109799 pubmed: 25289677 pmcid: 4188578
Zeiser R, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29(10):2062–8. https://doi.org/10.1038/leu.2015.212 .
doi: 10.1038/leu.2015.212 pubmed: 26228813 pmcid: 4854652
Spoerl S, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123(24):3832–42. https://doi.org/10.1182/blood-2013-12-543736 .
doi: 10.1182/blood-2013-12-543736 pubmed: 24711661
Choi J, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia. 2018;32(11):2483–94. https://doi.org/10.1038/s41375-018-0123-z .
doi: 10.1038/s41375-018-0123-z pubmed: 29691471 pmcid: 6168427
Ashami K, DiPersio JF, Choi J. Targeting IFNGR/IL6R or downstream JAK1/JAK2 to control GvHD. Oncotarget. 2018;9(87):35721–2. https://doi.org/10.18632/oncotarget.26291 .
doi: 10.18632/oncotarget.26291 pubmed: 30515263 pmcid: 6254668
Schroeder MA, Choi J, Staser K, DiPersio JF. The role of janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol Blood Marrow Transplant. 2018;24(6):1125–34. https://doi.org/10.1016/j.bbmt.2017.12.797 .
doi: 10.1016/j.bbmt.2017.12.797 pubmed: 29289756
Jagasia M, Zeiser R, Arbushites M, Delaite P, Gadbaw B, Bubnoff NV. Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy. 2018;10(5):391–402. https://doi.org/10.2217/imt-2017-0156 .
doi: 10.2217/imt-2017-0156 pubmed: 29316837
Jagasia M, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label phase 2 trial. Blood. 2020;135(20):1739–49. https://doi.org/10.1182/blood.2020004823 .
doi: 10.1182/blood.2020004823 pubmed: 32160294 pmcid: 7229262
Zeiser R, et al. Efficacy and safety of itacitinib versus placebo in combination with corticosteroids for initial treatment of acute graft-versus-host disease (GRAVITAS-301): a randomised, multicentre, double-blind, phase 3 trial. Lancet Haematol. 2022;9(1):e14–25. https://doi.org/10.1016/S2352-3026(21)00367-7 .
doi: 10.1016/S2352-3026(21)00367-7 pubmed: 34971577
Schroeder MA, et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 2020;4(8):1656–69. https://doi.org/10.1182/bloodadvances.2019001043 .
doi: 10.1182/bloodadvances.2019001043 pubmed: 32324888 pmcid: 7189299
Harris AC, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the mount Sinai acute GVHD international consortium. Biol Blood Marrow Transplant. 2016;22(1):4–10. https://doi.org/10.1016/j.bbmt.2015.09.001 .
doi: 10.1016/j.bbmt.2015.09.001 pubmed: 26386318
Hamilton BK. Updates in chronic graft-versus-host disease. Hematology Am Soc Hematol Educ Program. 2021;2021(1):648–54. https://doi.org/10.1182/hematology.2021000301 .
doi: 10.1182/hematology.2021000301 pubmed: 34889364 pmcid: 8791178
Cooke KR, et al. The biology of chronic graft-versus-host disease: a task force report from the national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–34. https://doi.org/10.1016/j.bbmt.2016.09.023 .
doi: 10.1016/j.bbmt.2016.09.023 pubmed: 27713092
Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech. 2011;4(3):318–33. https://doi.org/10.1242/dmm.006668 .
doi: 10.1242/dmm.006668 pubmed: 21558065 pmcid: 3097454
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood. 2020;136(4):418–28. https://doi.org/10.1182/blood.2019000952 .
doi: 10.1182/blood.2019000952 pubmed: 32526028 pmcid: 7378458
Villarino AV, Kanno Y, O’Shea JJ. "Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18(4):374–84. https://doi.org/10.1038/ni.3691 .
doi: 10.1038/ni.3691 pubmed: 28323260
Wilhelm K, et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med. 2010;16(12):1434–8. https://doi.org/10.1038/nm.2242 .
doi: 10.1038/nm.2242 pubmed: 21102458
Schreiber HA, et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med. 2013;210(10):2025–39. https://doi.org/10.1084/jem.20130903 .
doi: 10.1084/jem.20130903 pubmed: 24043764 pmcid: 3782042
Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25(1 Pt 2):1216–7.
pubmed: 8442093
Ferrara JL. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993;5(5):794–9. https://doi.org/10.1016/0952-7915(93)90139-j .
doi: 10.1016/0952-7915(93)90139-j pubmed: 8240742
Krensky AM, Weiss A, Crabtree G, Davis MM, Parham P. T-lymphocyte-antigen interactions in transplant rejection. N Engl J Med. 1990;322(8):510–7. https://doi.org/10.1056/NEJM199002223220805 .
doi: 10.1056/NEJM199002223220805 pubmed: 2405272
Beilhack A, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106(3):1113–22. https://doi.org/10.1182/blood-2005-02-0509 .
doi: 10.1182/blood-2005-02-0509 pubmed: 15855275 pmcid: 1895168
Braun MY, Lowin B, French L, Acha-Orbea H, Tschopp J. Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med. 1996;183(2):657–61. https://doi.org/10.1084/jem.183.2.657 .
doi: 10.1084/jem.183.2.657 pubmed: 8627178
Graubert TA, DiPersio JF, Russell JH, Ley TJ. Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J Clin Invest. 1997;100(4):904–11. https://doi.org/10.1172/JCI119606 .
doi: 10.1172/JCI119606 pubmed: 9259590 pmcid: 508263
Choi J, et al. IFNgammaR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120(19):4093–103. https://doi.org/10.1182/blood-2012-01-403196 .
doi: 10.1182/blood-2012-01-403196 pubmed: 22972985 pmcid: 3496960
Rowlings PA, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97(4):855–64. https://doi.org/10.1046/j.1365-2141.1997.1112925.x .
doi: 10.1046/j.1365-2141.1997.1112925.x pubmed: 9217189
Martino R, et al. Comparison of the classic Glucksberg criteria and the IBMTR Severity Index for grading acute graft-versus-host disease following HLA-identical sibling stem cell transplantation. International Bone Marrow Transplant Registry. Bone Marrow Transplant. 1999;24(3):283–7. https://doi.org/10.1038/sj.bmt.1701899 .
doi: 10.1038/sj.bmt.1701899 pubmed: 10455367
Ali AM, DiPersio JF, Schroeder MA. The role of biomarkers in the diagnosis and risk stratification of acute graft-versus-host disease: a systematic review. Biol Blood Marrow Transplant. 2016;22(9):1552–64. https://doi.org/10.1016/j.bbmt.2016.04.022 .
doi: 10.1016/j.bbmt.2016.04.022 pubmed: 27158050 pmcid: 5599102
Ali AM, DiPersio JF, Schroeder MA. A proposed biology- and biomarker-based algorithm for management of acute GvHD. Bone Marrow Transplant. 2017;52(2):337–40. https://doi.org/10.1038/bmt.2016.289 .
doi: 10.1038/bmt.2016.289 pubmed: 27869807
Gergoudis SC, et al. Biomarker-guided preemption of steroid-refractory graft-versus-host disease with α-1-antitrypsin. Blood Adv. 2020;4(24):6098–105. https://doi.org/10.1182/bloodadvances.2020003336 .
doi: 10.1182/bloodadvances.2020003336 pubmed: 33351103 pmcid: 7756981
Levine JE, et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a blood and marrow transplant clinical trials network study. Blood. 2012;119(16):3854–60. https://doi.org/10.1182/blood-2012-01-403063 .
doi: 10.1182/blood-2012-01-403063 pubmed: 22383800 pmcid: 3335389
Paczesny S, et al. A biomarker panel for acute graft-versus-host disease. Blood. 2009;113(2):273–8. https://doi.org/10.1182/blood-2008-07-167098 .
doi: 10.1182/blood-2008-07-167098 pubmed: 18832652 pmcid: 2615645
Srinagesh HK, Levine JE, Ferrara JLM. Biomarkers in acute graft-. Ther Adv Hematol. 2019;10:2040620719891358. https://doi.org/10.1177/2040620719891358 .
doi: 10.1177/2040620719891358 pubmed: 31839920 pmcid: 6893923
Major-Monfried H, et al. MAGIC biomarkers predict long-term outcomes for steroid-resistant acute GVHD. Blood. 2018;131(25):2846–55. https://doi.org/10.1182/blood-2018-01-822957 .
doi: 10.1182/blood-2018-01-822957 pubmed: 29545329 pmcid: 6014357
MacMillan ML, DeFor TE, Holtan SG, Rashidi A, Blazar BR, Weisdorf DJ. Validation of Minnesota acute graft-. Haematologica. 2020;105(2):519–24. https://doi.org/10.3324/haematol.2019.220970 .
doi: 10.3324/haematol.2019.220970 pubmed: 31320554 pmcid: 7012472
Srinagesh HK, et al. The MAGIC algorithm probability is a validated response biomarker of treatment of acute graft-versus-host disease. Blood Adv. 2019;3(23):4034–42. https://doi.org/10.1182/bloodadvances.2019000791 .
doi: 10.1182/bloodadvances.2019000791 pubmed: 31816061 pmcid: 6963240
Tominaga SI, Ohta S, Tago K. Soluble form of the ST2 gene product exhibits growth promoting activity in NIH-3T3 cells. Biochem Biophys Rep. 2016;5:8–15. https://doi.org/10.1016/j.bbrep.2015.11.020 .
doi: 10.1016/j.bbrep.2015.11.020 pubmed: 28955802
Hamilton BK. Current approaches to prevent and treat GVHD after allogeneic stem cell transplantation. Hematol Am Soc Hematol Educ Progr. 2018;1:228–35. https://doi.org/10.1182/asheducation-2018.1.228 .
doi: 10.1182/asheducation-2018.1.228
Aversa F, Pierini A, Ruggeri L, Martelli MF, Velardi A. The evolution of T cell depleted haploidentical transplantation. Front Immunol. 2019;10:2769. https://doi.org/10.3389/fimmu.2019.02769 .
doi: 10.3389/fimmu.2019.02769 pubmed: 31827475 pmcid: 6890606
Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood. 2001;98(12):3192–204. https://doi.org/10.1182/blood.v98.12.3192 .
doi: 10.1182/blood.v98.12.3192 pubmed: 11719354
Nash RA, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96(6):2062–8.
pubmed: 10979948
Ratanatharathorn V, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92(7):2303–14.
pubmed: 9746768
Perkins J, et al. A randomized phase II trial comparing tacrolimus and mycophenolate mofetil to tacrolimus and methotrexate for acute graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant. 2010;16(7):937–47. https://doi.org/10.1016/j.bbmt.2010.01.010 .
doi: 10.1016/j.bbmt.2010.01.010 pubmed: 20102746
Gragert L, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the US registry. N Engl J Med. 2014;371(4):339–48. https://doi.org/10.1056/NEJMsa1311707 .
doi: 10.1056/NEJMsa1311707 pubmed: 25054717 pmcid: 5965695
Bashey A, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31(10):1310–6. https://doi.org/10.1200/JCO.2012.44.3523 .
doi: 10.1200/JCO.2012.44.3523 pubmed: 23423745
O’Donnell PV, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86. https://doi.org/10.1053/bbmt.2002.v8.pm12171484 .
doi: 10.1053/bbmt.2002.v8.pm12171484 pubmed: 12171484
Luznik L, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50. https://doi.org/10.1016/j.bbmt.2008.03.005 .
doi: 10.1016/j.bbmt.2008.03.005 pubmed: 18489989 pmcid: 2633246
Raiola AM, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19(1):117–22. https://doi.org/10.1016/j.bbmt.2012.08.014 .
doi: 10.1016/j.bbmt.2012.08.014 pubmed: 22940057
Rimando JC, McCurdy SR, Luznik L. How we prevent GVHD in high risk patients: post transplant cyclophosphamide and beyond. Blood. 2022. https://doi.org/10.1182/blood.2021015129 .
doi: 10.1182/blood.2021015129
Ganguly S, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124(13):2131–41. https://doi.org/10.1182/blood-2013-10-525873 .
doi: 10.1182/blood-2013-10-525873 pubmed: 25139358 pmcid: 4186542
Kanakry CG, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5(211):211. https://doi.org/10.1126/scitranslmed.3006960 .
doi: 10.1126/scitranslmed.3006960
Prem S, et al. Low rates of acute and chronic GVHD with ATG and PTCy in matched and mismatched unrelated donor peripheral blood stem cell transplants. Eur J Haematol. 2019;102(6):486–93. https://doi.org/10.1111/ejh.13230 .
doi: 10.1111/ejh.13230 pubmed: 30924973
Symons HJ, et al. Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Adv. 2020;4(16):3913–25. https://doi.org/10.1182/bloodadvances.2020001648 .
doi: 10.1182/bloodadvances.2020001648 pubmed: 32813874 pmcid: 7448587
Bolaños-Meade J, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019;6(3):e132–43. https://doi.org/10.1016/S2352-3026(18)30221-7 .
doi: 10.1016/S2352-3026(18)30221-7 pubmed: 30824040 pmcid: 6503965
Holtan SG, Hamadani M, Wu J, et al. Post-transplant cyclophosphamide, tacrolimus, and mycophenolate mofetil as the new standard for graft-versus-host disease (GVHD) prophylaxis in reduced intensity conditioning: results from phase III BMT CTN 1703. In: Presented at: 2022 ASH Annual Meeting and Exposition; December 10–13, 2022; New Orleans, LA. Abstract LBA-4.
Ueda Oshima M, et al. Impact of GVHD prophylaxis on CMV reactivation and disease after HLA-matched peripheral blood stem cell transplantation. Blood Adv. 2023;7(8):1394–403. https://doi.org/10.1182/bloodadvances.2022009112 .
doi: 10.1182/bloodadvances.2022009112 pubmed: 36595478 pmcid: 10139935
Goldsmith SR, et al. Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: a CIBMTR analysis. Blood. 2021;137(23):3291–305. https://doi.org/10.1182/blood.2020009362 .
doi: 10.1182/blood.2020009362 pubmed: 33657221 pmcid: 8351903
Goldsmith SR, et al. Cytomegalovirus viremia, disease, and impact on relapse in T-cell replete peripheral blood haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide. Haematologica. 2016;101(11):e465–8. https://doi.org/10.3324/haematol.2016.149880 .
doi: 10.3324/haematol.2016.149880 pubmed: 27443287 pmcid: 5394884
Rambaldi B, et al. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv. 2021;5(2):352–64. https://doi.org/10.1182/bloodadvances.2020003005 .
doi: 10.1182/bloodadvances.2020003005 pubmed: 33496734 pmcid: 7839379
Yeh AC, et al. CMV exposure drives long-term CD57+ CD4 memory T-cell inflation following allogeneic stem cell transplant. Blood. 2021;138(26):2874–85. https://doi.org/10.1182/blood.2020009492 .
doi: 10.1182/blood.2020009492 pubmed: 34115118 pmcid: 8718626
Baron F, et al. Anti-thymocyte globulin as graft-versus-host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: a review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2017;102(2):224–34. https://doi.org/10.3324/haematol.2016.148510 .
doi: 10.3324/haematol.2016.148510 pubmed: 27927772 pmcid: 5286931
Feng X, et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4+CD25highFOXP3+ regulatory T cells in vitro. Blood. 2008;111(7):3675–83. https://doi.org/10.1182/blood-2008-01-130146 .
doi: 10.1182/blood-2008-01-130146 pubmed: 18250226 pmcid: 2275026
Bacigalupo A, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001;98(10):2942–7. https://doi.org/10.1182/blood.v98.10.2942 .
doi: 10.1182/blood.v98.10.2942 pubmed: 11698275
Bacigalupo A, et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biol Blood Marrow Transplant. 2006;12(5):560–5. https://doi.org/10.1016/j.bbmt.2005.12.034 .
doi: 10.1016/j.bbmt.2005.12.034 pubmed: 16635791
Finke J, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10(9):855–64. https://doi.org/10.1016/S1470-2045(09)70225-6 .
doi: 10.1016/S1470-2045(09)70225-6 pubmed: 19695955
Watkins B, et al. Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD. J Clin Oncol. 2021;39(17):1865–77. https://doi.org/10.1200/JCO.20.01086 .
doi: 10.1200/JCO.20.01086 pubmed: 33449816 pmcid: 8260909
Blazar BR, Taylor PA, Linsley PS, Vallera DA. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood. 1994;83(12):3815–25.
doi: 10.1182/blood.V83.12.3815.3815 pubmed: 7515723
Abboud R, Gao F, Rettig MP, et al. A single-arm, open-label, pilot study of the JAK1 selective inhibitor itacitinib for the prophylaxis of graft-versus-host disease and cytokine release syndrome in T-Cell replete haploidentical peripheral blood hematopoietic cell transplantation. Blood. 2021;138(Supplement 1):100. https://doi.org/10.1182/blood-2021-144591
Etra A, et al. Effective treatment of low-risk acute GVHD with itacitinib monotherapy. Blood. 2023;141(5):481–9. https://doi.org/10.1182/blood.2022017442 .
doi: 10.1182/blood.2022017442 pubmed: 36095841
Hobbs G, Kim HT, Bottoms AJS, et al. A phase II study of ruxolitinib pre-, during- and post-hematopoietic celltransplantation for patients with primary or secondary myelofibrosis. Blood. 2021;138(Supplement 1):169. https://doi.org/10.1182/blood-2021-146330
Sandmaier BM, et al. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: a multicentre, randomised, phase 3 trial. Lancet Haematol. 2019;6(8):e409–18. https://doi.org/10.1016/S2352-3026(19)30088-2 .
doi: 10.1016/S2352-3026(19)30088-2 pubmed: 31248843 pmcid: 6686903
Schroeder MA, Choi J, Atluri H, et al. Phase I study of baricitinib Gvhd prophylaxis in HLA-matched, peripheral blood allogeneic hematopoietic cell transplant. Blood. 2022;140(Supplement 1):1875–6. https://doi.org/10.1182/blood-2022-157214
Aversa F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339(17):1186–93. https://doi.org/10.1056/NEJM199810223391702 .
doi: 10.1056/NEJM199810223391702 pubmed: 9780338
Choe H, Shah NN, Chevallier P, et al. A single-arm, open-label phase 1 study of itacitinib (ITA) with calcineurin inhibitor (CNI)–based interventions for prophylaxis of graft-versus-host disease (GVHD; GRAVITAS-119). Blood. 2020;136(Supplement 1):50–1.
Bleakley M, et al. Naive T-cell depletion to prevent chronic graft-versus-host disease. J Clin Oncol. 2022;40(11):1174–85. https://doi.org/10.1200/JCO.21.01755 .
doi: 10.1200/JCO.21.01755 pubmed: 35007144 pmcid: 8987226
Chaleff S, et al. A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation. Cytotherapy. 2007;9(8):746–54. https://doi.org/10.1080/14653240701644000 .
doi: 10.1080/14653240701644000 pubmed: 17917892
Bertaina A, et al. Unrelated donor vs HLA-haploidentical α/β T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood. 2018;132(24):2594–607. https://doi.org/10.1182/blood-2018-07-861575 .
doi: 10.1182/blood-2018-07-861575 pubmed: 30348653
Martelli MF, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124(4):638–44. https://doi.org/10.1182/blood-2014-03-564401 .
doi: 10.1182/blood-2014-03-564401 pubmed: 24923299
MacMillan ML, et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 2021;5(5):1425–36. https://doi.org/10.1182/bloodadvances.2020003219 .
doi: 10.1182/bloodadvances.2020003219 pubmed: 33666654 pmcid: 7948291
Luznik L, et al. Randomized phase III BMT CTN trial of calcineurin inhibitor-free chronic graft-versus-host disease interventions in myeloablative hematopoietic cell transplantation for hematologic malignancies. J Clin Oncol. 2022;40(4):356–68. https://doi.org/10.1200/JCO.21.02293 .
doi: 10.1200/JCO.21.02293 pubmed: 34855460
Hoeg AT, Moroz A, Gandhi A, et al. Orca-T results in high Gvhd-free and relapse-free survival following myeloablative conditioning for hematological malignancies: results of a single center phase 2 and a multicenter phase 1b study. Blood. 2021;138(Supplement 1):98.
Ruutu T, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014;49(2):168–73. https://doi.org/10.1038/bmt.2013.107 .
doi: 10.1038/bmt.2013.107 pubmed: 23892326
Mielcarek M, et al. Effectiveness and safety of lower dose prednisone for initial treatment of acute graft-versus-host disease: a randomized controlled trial. Haematologica. 2015;100(6):842–8. https://doi.org/10.3324/haematol.2014.118471 .
doi: 10.3324/haematol.2014.118471 pubmed: 25682602 pmcid: 4450631
Deeg HJ. How I treat refractory acute GVHD. Blood. 2007;109(10):4119–26. https://doi.org/10.1182/blood-2006-12-041889 .
doi: 10.1182/blood-2006-12-041889 pubmed: 17234737 pmcid: 1885485
Pidala J, et al. Randomized multicenter trial of sirolimus vs prednisone as initial therapy for standard-risk acute GVHD: the BMT CTN 1501 trial. Blood. 2020;135(2):97–107. https://doi.org/10.1182/blood.2019003125 .
doi: 10.1182/blood.2019003125 pubmed: 31738834 pmcid: 6952830
Arai S, Margolis J, Zahurak M, Anders V, Vogelsang GB. Poor outcome in steroid-refractory graft-versus-host disease with antithymocyte globulin treatment. Biol Blood Marrow Transplant. 2002;8(3):155–60. https://doi.org/10.1053/bbmt.2002.v8.pm11939605 .
doi: 10.1053/bbmt.2002.v8.pm11939605 pubmed: 11939605
Carniti C, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015;21(16):3740–9. https://doi.org/10.1158/1078-0432.CCR-14-2758 .
doi: 10.1158/1078-0432.CCR-14-2758 pubmed: 25977345
Zeiser R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med. 2020;382(19):1800–10. https://doi.org/10.1056/NEJMoa1917635 .
doi: 10.1056/NEJMoa1917635 pubmed: 32320566
Jagasia M, et al. Extracorporeal photopheresis versus anticytokine therapy as a second-line treatment for steroid-refractory acute GVHD: a multicenter comparative analysis. Biol Blood Marrow Transplant. 2013;19(7):1129–33. https://doi.org/10.1016/j.bbmt.2013.04.018 .
doi: 10.1016/j.bbmt.2013.04.018 pubmed: 23623892
Mankarious M, Matthews NC, Snowden JA, Alfred A. Extracorporeal photopheresis (ECP) and the potential of novel biomarkers in optimizing management of acute and chronic graft vs host disease (GvHD). Front Immunol. 2020;11:81. https://doi.org/10.3389/fimmu.2020.00081 .
doi: 10.3389/fimmu.2020.00081 pubmed: 32082329 pmcid: 7005102
Zhang H, Chen R, Cheng J, Jin N, Chen B. Systematic review and meta-analysis of prospective studies for ECP treatment in patients with steroid-refractory acute GVHD. Patient Prefer Adherence. 2015;9:105–11. https://doi.org/10.2147/PPA.S76563 .
doi: 10.2147/PPA.S76563 pubmed: 25653504 pmcid: 4303403
Modemann F, et al. Ruxolitinib plus extracorporeal photopheresis (ECP) for steroid refractory acute graft-versus-host disease of lower GI-tract after allogeneic stem cell transplantation leads to increased regulatory T cell level. Bone Marrow Transplant. 2020;55(12):2286–93. https://doi.org/10.1038/s41409-020-0952-z .
doi: 10.1038/s41409-020-0952-z pubmed: 32447349 pmcid: 8376644
Newell LF, Holtan SG. Acute GVHD: think before you treat. Hematol Am Soc Hematol Educ Program. 2021;1:642–7. https://doi.org/10.1182/hematology.2021000300 .
doi: 10.1182/hematology.2021000300
Bejanyan N, et al. A phase 2 trial of GVHD prophylaxis with PTCy, sirolimus, and MMF after peripheral blood haploidentical transplantation. Blood Adv. 2021;5(5):1154–63. https://doi.org/10.1182/bloodadvances.2020003779 .
doi: 10.1182/bloodadvances.2020003779 pubmed: 33635333 pmcid: 7948297
Cutler C, et al. Tacrolimus/sirolimus vs tacrolimus/methotrexate as GVHD prophylaxis after matched, related donor allogeneic HCT. Blood. 2014;124(8):1372–7. https://doi.org/10.1182/blood-2014-04-567164 .
doi: 10.1182/blood-2014-04-567164 pubmed: 24982504 pmcid: 4141519
Hamilton BK, et al. Inferior outcomes with cyclosporine and mycophenolate mofetil after myeloablative allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25(9):1744–55. https://doi.org/10.1016/j.bbmt.2019.05.019 .
doi: 10.1016/j.bbmt.2019.05.019 pubmed: 31158502 pmcid: 7039394
Törlén J, et al. A prospective randomized trial comparing cyclosporine/methotrexate and tacrolimus/sirolimus as graft-versus-host disease prophylaxis after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(11):1417–25. https://doi.org/10.3324/haematol.2016.149294 .
doi: 10.3324/haematol.2016.149294 pubmed: 27662016 pmcid: 5394879
Storb R, et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. Transplantation. 1993;56(4):800–7. https://doi.org/10.1097/00007890-199310000-00005 .
doi: 10.1097/00007890-199310000-00005 pubmed: 7692635
Storb R, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med. 1986;314(12):729–35. https://doi.org/10.1056/NEJM198603203141201 .
doi: 10.1056/NEJM198603203141201 pubmed: 3513012
Aversa F, et al. Immune tolerance induction by nonmyeloablative haploidentical HSCT combining T-cell depletion and posttransplant cyclophosphamide. Blood Adv. 2017;1(24):2166–75. https://doi.org/10.1182/bloodadvances.2017009423 .
doi: 10.1182/bloodadvances.2017009423 pubmed: 29296864 pmcid: 5737124
McCurdy SR, Fuchs EJ. Comparable outcomes for hematologic malignancies after HLA-haploidentical transplantation with posttransplantation cyclophosphamide and HLA-matched transplantation. Adv Hematol. 2015;2015: 431923. https://doi.org/10.1155/2015/431923 .
doi: 10.1155/2015/431923 pubmed: 26713094 pmcid: 4680052
Massoud R, et al. Comparison of immune reconstitution between anti-T-lymphocyte globulin and posttransplant cyclophosphamide as acute graft-versus-host disease prophylaxis in allogeneic myeloablative peripheral blood stem cell transplantation. Haematologica. 2022;107(4):857–67. https://doi.org/10.3324/haematol.2020.271445 .
doi: 10.3324/haematol.2020.271445 pubmed: 33832208
Radojcic V, Luznik L. Mechanism of action of posttransplantation cyclophosphamide: more than meets the eye. J Clin Invest. 2019;129(6):2189–91. https://doi.org/10.1172/JCI128710 .
doi: 10.1172/JCI128710 pubmed: 31063990 pmcid: 6546449
Radojcic V, Luznik L. PTCY keeps on giving! Blood. 2019;134(11):848–9. https://doi.org/10.1182/blood.2019002284 .
doi: 10.1182/blood.2019002284 pubmed: 31515227
Radojcic V, Luznik L. PTCy and “the story of the three bears.” Bone Marrow Transplant. 2021;56(4):765–6. https://doi.org/10.1038/s41409-020-01123-7 .
doi: 10.1038/s41409-020-01123-7 pubmed: 33214689
Slade M, DiPersio JF, Westervelt P, Vij R, Schroeder MA, Romee R. Haploidentical hematopoietic cell transplant with post-transplant cyclophosphamide and peripheral blood stem cell grafts in older adults with acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant. 2017;23(10):1736–43. https://doi.org/10.1016/j.bbmt.2017.06.019 .
doi: 10.1016/j.bbmt.2017.06.019 pubmed: 28688919
Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest. 2019;129(6):2357–73. https://doi.org/10.1172/JCI124218 .
doi: 10.1172/JCI124218 pubmed: 30913039 pmcid: 6546453
Schäfer H, et al. A prospective single-center study on CNI-free GVHD prophylaxis with everolimus plus mycophenolate mofetil in allogeneic HCT. Ann Hematol. 2021;100(8):2095–103. https://doi.org/10.1007/s00277-021-04487-y .
doi: 10.1007/s00277-021-04487-y pubmed: 33755792 pmcid: 8285343
Shapiro RM, Antin JH. Therapeutic options for steroid-refractory acute and chronic GVHD: an evolving landscape. Expert Rev Hematol. 2020;13(5):519–32. https://doi.org/10.1080/17474086.2020.1752175 .
doi: 10.1080/17474086.2020.1752175 pubmed: 32249631

Auteurs

Dilan A Patel (DA)

Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA.

Mallory Crain (M)

Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA.

Iskra Pusic (I)

Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA.

Mark A Schroeder (MA)

Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA. Markschroeder@wustl.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH