The relationship between ethylene-induced autophagy and reactive oxygen species in
Arabidopsis
Autophagy
Ethylene
Reactive oxygen species
Waterlogging stress
Journal
PeerJ
ISSN: 2167-8359
Titre abrégé: PeerJ
Pays: United States
ID NLM: 101603425
Informations de publication
Date de publication:
2023
2023
Historique:
received:
02
12
2022
accepted:
20
04
2023
medline:
2
6
2023
pubmed:
31
5
2023
entrez:
31
5
2023
Statut:
epublish
Résumé
The response of plants to waterlogging stress is a complex process, with ethylene playing a crucial role as a signaling molecule. However, it remains unclear how ethylene is initially triggered in response to waterlogging stress when plants are continuously waterlogged for less than 12 hours. Here, we have shown that ethylene-induced autophagy leads to the degradation of damaged mitochondria (the main organelles producing reactive oxygen species (ROS)) to reduce ROS production during oxidative stress in
Identifiants
pubmed: 37255589
doi: 10.7717/peerj.15404
pii: 15404
pmc: PMC10226478
doi:
Substances chimiques
Antioxidants
0
ethylene
91GW059KN7
Ethylenes
0
Reactive Oxygen Species
0
Banques de données
figshare
['10.6084/m9.figshare.22318048.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e15404Informations de copyright
©2023 Zheng et al.
Déclaration de conflit d'intérêts
The authors declare there are no competing interests.
Références
Plant Cell Rep. 2016 May;35(5):995-1007
pubmed: 26883222
Ann Bot. 2011 Jun;107(8):1335-43
pubmed: 21489969
Annu Rev Plant Biol. 2018 Apr 29;69:209-236
pubmed: 29489394
Trends Plant Sci. 2020 Jan;25(1):3-6
pubmed: 31734094
New Phytol. 2021 Jan;229(1):64-70
pubmed: 31856295
Plant Cell. 2007 Nov;19(11):3819-30
pubmed: 18055613
Curr Opin Plant Biol. 2011 Dec;14(6):691-9
pubmed: 21862390
PLoS Genet. 2018 Jan 11;14(1):e1007144
pubmed: 29324765
New Phytol. 2017 Mar;213(4):1667-1681
pubmed: 28164334
PeerJ. 2019 Feb 19;7:e6391
pubmed: 30809434
Nature. 2009 Aug 20;460(7258):1026-30
pubmed: 19693083
Semin Cell Dev Biol. 2018 Aug;80:113-122
pubmed: 28734771
Annu Rev Plant Biol. 2018 Apr 29;69:173-208
pubmed: 29539270
Crit Rev Biotechnol. 2016 Oct;36(5):956-66
pubmed: 26177332
Free Radic Res. 2018 Aug;52(8):826-839
pubmed: 29732902
Cell. 2016 Oct 6;167(2):313-324
pubmed: 27716505
J Exp Bot. 2014 Jan;65(1):261-73
pubmed: 24253196
Nat Commun. 2019 Sep 5;10(1):4020
pubmed: 31488841
Plant Biotechnol J. 2018 Dec;16(12):2063-2076
pubmed: 29729068
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13834-13839
pubmed: 29233944
J Integr Plant Biol. 2021 Jan;63(1):161-179
pubmed: 32324339
J Biol Chem. 2008 Apr 18;283(16):10892-903
pubmed: 18281291
Curr Biol. 2021 May 10;31(9):R457-R458
pubmed: 33974877
Plant Biol (Stuttg). 2013 May;15(3):426-35
pubmed: 23574304
Trends Plant Sci. 2019 May;24(5):443-454
pubmed: 30857921
Plant Biotechnol J. 2019 Dec;17(12):2286-2298
pubmed: 31033158
Front Plant Sci. 2019 Apr 11;10:468
pubmed: 31031792
Nat Commun. 2017 Jun 12;8:15758
pubmed: 28604689
J Exp Bot. 2020 Jan 23;71(3):1067-1077
pubmed: 31638649
Biochem J. 1999 Sep 15;342 Pt 3:481-96
pubmed: 10477257
Biosci Biotechnol Biochem. 2011;75(7):1408-12
pubmed: 21737912
Plant Physiol Biochem. 2010 Dec;48(12):909-30
pubmed: 20870416
Plant Cell Environ. 2020 Jun;43(6):1545-1557
pubmed: 32020637
PLoS Genet. 2015 Mar 30;11(3):e1005143
pubmed: 25822663
Autophagy. 2015;11(12):2233-46
pubmed: 26566261
Curr Biol. 2021 May 10;31(9):1931-1944.e4
pubmed: 33711250
Trends Plant Sci. 2012 Sep;17(9):526-37
pubmed: 22694835
Plant Cell. 2017 Apr;29(4):775-790
pubmed: 28351990