DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship.
DPP-4 inhibitor
Inflammation
Parkinson’s disease
Sitagliptin
Journal
Pharmacological reports : PR
ISSN: 2299-5684
Titre abrégé: Pharmacol Rep
Pays: Switzerland
ID NLM: 101234999
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
16
04
2023
accepted:
19
05
2023
revised:
17
05
2023
medline:
28
7
2023
pubmed:
3
6
2023
entrez:
3
6
2023
Statut:
ppublish
Résumé
Parkinson's disease (PD) usually occurs due to the degeneration of dopaminergic neurons in the substantia nigra (SN). Management of PD is restricted to symptomatic improvement. Consequently, a novel treatment for managing motor and non-motor symptoms in PD is necessary. Abundant findings support the protection of dipeptidyl peptidase 4 (DPP-4) inhibitors in PD. Consequently, this study aims to reveal the mechanism of DPP-4 inhibitors in managing PD. DPP-4 inhibitors are oral anti-diabetic agents approved for managing type 2 diabetes mellitus (T2DM). T2DM is linked with an increased chance of the occurrence of PD. Extended usage of DPP-4 inhibitors in T2DM patients may attenuate the development of PD by inhibiting inflammatory and apoptotic pathways. Thus, DPP-4 inhibitors like sitagliptin could be a promising treatment against PD neuropathology via anti-inflammatory, antioxidant, and anti-apoptotic impacts. DPP-4 inhibitors, by increasing endogenous GLP-1, can also reduce memory impairment in PD. In conclusion, the direct effects of DPP-4 inhibitors or indirect effects through increasing circulating GLP-1 levels could be an effective therapeutic strategy in treating PD patients through modulation of neuroinflammation, oxidative stress, mitochondrial dysfunction, and neurogenesis.
Identifiants
pubmed: 37269487
doi: 10.1007/s43440-023-00500-5
pii: 10.1007/s43440-023-00500-5
doi:
Substances chimiques
Dipeptidyl-Peptidase IV Inhibitors
0
Sitagliptin Phosphate
TS63EW8X6F
Hypoglycemic Agents
0
Glucagon-Like Peptide 1
89750-14-1
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
923-936Informations de copyright
© 2023. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.
Références
Batiha GE-S, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson’s disease: a faraway snapshot but so close. Inflammopharmacol. 2022;31:37–56.
doi: 10.1007/s10787-022-01125-5
Al-Kuraishy HM, Al-Gareeb AI, Albogami SM, Jean-Marc S, Nadwa EH, Hafiz AA, et al. Potential therapeutic benefits of metformin alone and in combination with sitagliptin in the management of type 2 diabetes patients with COVID-19. Pharm. 2022;15:1361.
Macleod AD, Henery R, Nwajiugo PC, Scott NW, Caslake R, Counsell CE. Age-related selection bias in Parkinson’s disease research: are we recruiting the right participants? Parkinsonism Relat Disord. 2018;55:128–33.
pubmed: 29871791
doi: 10.1016/j.parkreldis.2018.05.027
Kim JJ, Bandres-Ciga S, Blauwendraat C, Gan-Or Z, Consortium IPsDG. No genetic evidence for involvement of alcohol dehydrogenase genes in risk for Parkinson’s disease. Neurobiol Aging. 2020;87:140 (e19-e22).
doi: 10.1016/j.neurobiolaging.2019.11.006
Calvani R, Picca A, Landi G, Marini F, Biancolillo A, Coelho-Junior HJ, et al. A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: an EXosomes in Parkinson disease (EXPAND) ancillary study. GeroSci. 2020;42:1323–34.
doi: 10.1007/s11357-020-00192-2
Berg D, Borghammer P, Fereshtehnejad S-M, Heinzel S, Horsager J, Schaeffer E, et al. Prodromal Parkinson disease subtypes—key to understanding heterogeneity. Nat Rev Neurol. 2021;17:349–61.
pubmed: 33879872
doi: 10.1038/s41582-021-00486-9
Braak H, Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Parkinsons Dis. 2017;7:S71–85.
pubmed: 28282810
doi: 10.3233/JPD-179001
Biswas S, Bagchi A. Study of the effects of nicotine and caffeine for the treatment of Parkinson’s disease. App Biochem Biotechnol. 2023;195:639–54.
doi: 10.1007/s12010-022-04155-5
Singh SK, Dutta A, Modi G. α-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson’s disease. Future Med Chem. 2017;9:1039–53.
pubmed: 28632413
doi: 10.4155/fmc-2017-0016
Pariyar R, Bastola T, Lee DH, Seo J. Neuroprotective effects of the DPP4 inhibitor vildagliptin in in vivo and in vitro models of Parkinson’s disease. Int J Mol Sci. 2022;23:2388.
pubmed: 35216503
doi: 10.3390/ijms23042388
Alomair BM, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, De Waard M, Elekhnawy E, et al. Is sitagliptin effective for SARS-CoV-2 infection: false or true prophecy? Inflammopharmacol. 2022;30:2411–5.
doi: 10.1007/s10787-022-01078-9
Scott LJ. Sitagliptin: a review in type 2 diabetes. Drugs. 2017;77:209–24.
pubmed: 28078647
doi: 10.1007/s40265-016-0686-9
Mascolo A, Rafaniello C, Sportiello L, Sessa M, Cimmaruta D, Rossi F, et al. Dipeptidyl peptidase (DPP)-4 inhibitor-induced arthritis/arthralgia: a review of clinical cases. Drug Saf. 2016;39:401–7.
pubmed: 26873369
doi: 10.1007/s40264-016-0399-8
El-Banna T, Abd El-Aziz A, Sonbol F, El-Ekhnawy E. Adaptation of Pseudomonas aeruginosa clinical isolates to benzalkonium chloride retards its growth and enhances biofilm production. Mol Biol Rep. 2019;46:3437–43.
pubmed: 30972606
doi: 10.1007/s11033-019-04806-7
Kaneko M, Narukawa M. Assessment of the risk of hospitalization for heart failure with dipeptidyl peptidase-4 inhibitors, saxagliptin, alogliptin, and sitagliptin in patients with type 2 diabetes, using an alternative measure to the hazard ratio. Ann Pharmacother. 2017;51:570–6.
pubmed: 28622738
doi: 10.1177/1060028017698496
Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T. An investigation of the impact of triclosan adaptation on Proteus mirabilis clinical isolates from an Egyptian university hospital. Braz J Microbiol. 2021;52:927–37.
pubmed: 33826115
doi: 10.1007/s42770-021-00485-4
Ray C-Y, Wu VC-C, Wang C-L, Tu H-T, Huang Y-T, Kuo C-F, et al. Hypoglycemia associated with drug-drug interactions in patients with type 2 diabetes mellitus using dipeptidylpeptidase-4 inhibitors. Front Pharmacol. 2021;12:570835.
pubmed: 34040513
doi: 10.3389/fphar.2021.570835
Scigliano G, Ronchetti G, Girotti F, Musicco M. Sympathetic modulation by levodopa reduces vascular risk factors in Parkinson disease. Parkinsonism Relat Disord. 2009;15:138–43.
pubmed: 18556236
doi: 10.1016/j.parkreldis.2008.04.036
Elekhnawy EA, Sonbol FI, Elbanna TE, Abdelaziz AA. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt J Med Hum Genet. 2021;22:1–6.
doi: 10.1186/s43042-021-00170-z
Yang Y-W, Hsieh T-F, Li C-I, Liu C-S, Lin W-Y, Chiang J-H, et al. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Med. 2017;96:e5921.
doi: 10.1097/MD.0000000000005921
Parkinson’s U. The incidence and prevalence of Parkinson’s in the UK. London. NICE. 2018.
Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B. Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care. 2011;34:1102–8.
pubmed: 21411503
doi: 10.2337/dc10-1333
Bohnen NI, Kotagal V, Müller ML, Koeppe RA, Scott PJ, Albin RL, et al. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson disease. Parkinsonism Relat Disord. 2014;20:1394–8.
pubmed: 25454317
doi: 10.1016/j.parkreldis.2014.10.008
Sun Y, Chang Y-H, Chen H-F, Su Y-H, Su H-F, Li C-Y. Risk of Parkinson disease onset in patients with diabetes: a 9-year population-based cohort study with age and sex stratifications. Diabetes Care. 2012;35:1047–9.
pubmed: 22432112
doi: 10.2337/dc11-1511
Marques A, Dutheil F, Durand E, Rieu I, Mulliez A, Fantini ML, et al. Glucose dysregulation in Parkinson’s disease: too much glucose or not enough insulin? Parkinsonism Relat Disord. 2018;55:122–7.
pubmed: 29866628
doi: 10.1016/j.parkreldis.2018.05.026
Santiago JA, Potashkin JA. Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol Med. 2013;19:176–86.
pubmed: 23375873
doi: 10.1016/j.molmed.2013.01.002
Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2021;26:5140–9.
pubmed: 32536688
doi: 10.1038/s41380-020-0804-7
Nadwa EH, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Albogami SM, Alorabi M, et al. Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023;396:453–68.
doi: 10.1007/s00210-022-02346-9
Zemva J, Udelhoven M, Moll L, Freude S, Stöhr O, Brönneke H, et al. Neuronal overexpression of insulin receptor substrate 2 leads to increased fat mass, insulin resistance, and glucose intolerance during aging. Age. 2013;35:1881–97.
pubmed: 23160735
doi: 10.1007/s11357-012-9491-x
Cheong JL, de Pablo-Fernandez E, Foltynie T, Noyce AJ. The association between type 2 diabetes mellitus and Parkinson’s disease. J Parkinsons Dis. 2020;10:775–89.
pubmed: 32333549
doi: 10.3233/JPD-191900
Al-kuraishy HM, Al-Gareeb AI, Alkhuriji AF, Al-Megrin WAI, Elekhnawy E, Negm WA, et al. Investigation of the impact of rosuvastatin and telmisartan in doxorubicin-induced acute cardiotoxicity. Biom Pharmacother. 2022;154: 113673.
doi: 10.1016/j.biopha.2022.113673
Najem D, Bamji-Mirza M, Chang N, Liu QY, Zhang W. Insulin resistance, neuroinflammation, and Alzheimer’s disease. Rev Neurosci. 2014;25:509–25.
pubmed: 24622783
doi: 10.1515/revneuro-2013-0050
Kleinridders A, Pothos EN. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior. Curr Nutr Rep. 2019;8:83–91.
pubmed: 31001792
doi: 10.1007/s13668-019-0276-z
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GE-S. Nitazoxanide and COVID-19: a review. Mol Biol Rep. 2022;49:11169–76.
pubmed: 36094778
doi: 10.1007/s11033-022-07822-2
Pérez-Taboada I, Alberquilla S, Martín ED, Anand R, Vietti-Michelina S, Tebeka NN, et al. Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice. J Mov Disord. 2020;35:1636–48.
doi: 10.1002/mds.28124
Batiha GE-S, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM. Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacol. 2022;30:1993–2001.
doi: 10.1007/s10787-022-01070-3
Morris J, Vidoni ED, Perea R, Rada R, Johnson DK, Lyons K, et al. Insulin resistance and gray matter volume in neurodegenerative disease. Neurosci. 2014;270:139–47.
doi: 10.1016/j.neuroscience.2014.04.006
Pérez-Segura I, Santiago-Balmaseda A, Rodríguez-Hernández LD, Morales-Martínez A, Martínez-Becerril HA, Martínez-Gómez PA, et al. PPARs and their neuroprotective effects in Parkinson’s disease: a novel therapeutic approach in α-synucleinopathy? Int J Mol Sci. 2023;24:3264.
pubmed: 36834679
doi: 10.3390/ijms24043264
Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;27:1–11.
doi: 10.1186/s40001-022-00818-5
Werner T, Horvath I, Wittung-Stafshede P. Crosstalk between alpha-synuclein and other human and non-human amyloidogenic proteins: consequences for amyloid formation in Parkinson’s disease. J Parkinsons Dis. 2020;10:819–30.
pubmed: 32538869
doi: 10.3233/JPD-202085
Chojdak-Łukasiewicz J, Małodobra-Mazur M, Zimny A, Noga L, Paradowski B. Plasma tau protein and Aβ42 level as markers of cognitive impairment in patients with Parkinson’s disease. Adv Clin Exp Med. 2020;29:115–21.
pubmed: 31990459
doi: 10.17219/acem/112058
Pan L, Meng L, He M, Zhang Z. Tau in the pathophysiology of Parkinson’s disease. J Mol Neurosci. 2021;2021:1–13.
Maude H, Lau W, Maniatis N, Andrew T. New insights into mitochondrial dysfunction at disease susceptibility loci in the development of type 2 diabetes. Front Endocrinol. 2021;12: 694893.
doi: 10.3389/fendo.2021.694893
de Carvalho B, Barreto G, Marques L, de Carvalho SD, Soares Pinto L, de Souza SI. Parkinson’s disease pathogeny and treat-ments: a narrative review. J Neurobiol Physiol. 2021;3:36–45.
Al-Nami MS, Al-Kuraishy HM, Al-Gareeb AI, Al-Mamoori F. Metabolic profile and prolactin serum levels in men with type 2 diabetes mellitus: old-new rubric. Int J Crit Illn Inj Sci. 2019;9:120.
pubmed: 31620350
doi: 10.4103/IJCIIS.IJCIIS_40_19
Srodulski S, Sharma S, Bachstetter AB, Brelsfoard JM, Pascual C, Xie XS, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegen. 2014;9:1–12.
doi: 10.1186/1750-1326-9-30
Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56:1883–96.
pubmed: 29974394
doi: 10.1007/s12035-018-1195-5
Cardoso S, Moreira PI. Anti-diabetic drugs for Alzheimer’s and Parkinson’s diseases: repurposing insulin, metformin, and thiazolidinediones. Int Rev Neurobiol. 2020;155:37–64.
pubmed: 32854858
doi: 10.1016/bs.irn.2020.02.010
Badawi GA, El Fattah MAA, Zaki HF, El Sayed MI. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacol. 2017;25:369–82.
doi: 10.1007/s10787-017-0331-6
Safar MM, Abdelkader NF, Ramadan E, Kortam MA, Mohamed AF. Novel mechanistic insights towards the repositioning of alogliptin in Parkinson’s disease. Life Sci. 2021;287: 120132.
pubmed: 34774622
doi: 10.1016/j.lfs.2021.120132
Abdelaziz A, Sonbol F, Elbanna T, El-Ekhnawy E. Exposure to sublethal concentrations of benzalkonium chloride induces antimicrobial resistance and cellular changes in Klebsiellae pneumoniae clinical isolates. Microb Drug Resist. 2019;25:631–8.
pubmed: 30614757
doi: 10.1089/mdr.2018.0235
Abhangi KV, Patel JI. Neuroprotective effects of linagliptin in a rotenone-induced rat model of Parkinson’s disease. Indian J Pharmacol. 2022;54:46.
pubmed: 35343207
doi: 10.4103/ijp.IJP_384_20
Hasan Khudhair D, Al-Gareeb AI, Al-Kuraishy HM, El-Kadem AH, Elekhnawy E, Negm WA, et al. Combination of vitamin C and curcumin safeguards against methotrexate-induced acute liver injury in mice by synergistic antioxidant effects. Front Med. 2022;9: 866343.
doi: 10.3389/fmed.2022.866343
Nassar NN, Al-Shorbagy MY, Arab HH, Abdallah DM. Saxagliptin: a novel antiparkinsonian approach. Neuropharmacol. 2015;89:308–17.
doi: 10.1016/j.neuropharm.2014.10.007
Elekhnawy E, Negm WA. The potential application of probiotics for the prevention and treatment of COVID-19. Egypt J Med Hum Genet. 2022;23:1–9.
doi: 10.1186/s43042-022-00252-6
Svenningsson P, Wirdefeldt K, Yin L, Fang F, Markaki I, Efendic S, et al. Reduced incidence of Parkinson’s disease after dipeptidyl peptidase-4 inhibitors—a nationwide case-control study. J Mov Disord. 2016;31:1422–3.
doi: 10.1002/mds.26734
Yue X, Li H, Yan H, Zhang P, Chang L, Li T. Risk of Parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies. Medicine (Baltimore). 2016;95:e3549.
pubmed: 27149468
doi: 10.1097/MD.0000000000003549
Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in Parkinson’s disease. J Mov Disord. 2021;36:16–24.
doi: 10.1002/mds.28075
Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol. 2009;202:431.
pubmed: 19570816
doi: 10.1677/JOE-09-0132
Abdelsalam RM, Safar MM. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NF κB and Nrf2-antioxidant signaling pathways. J Neurochem. 2015;133:700–7.
pubmed: 25752913
doi: 10.1111/jnc.13087
Wiciński M, Wódkiewicz E, Słupski M, Walczak M, Socha M, Malinowski B, et al. Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: focus on Alzheimer’s disease. BioMed Res Int. 2018;2018:1.
doi: 10.1155/2018/6091014
Xu J-T, Qian Y, Wang W, Chen X-X, Li Y, Li Y, et al. Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson’s disease. Neural Regen Res. 2020;15:112.
pubmed: 31535659
doi: 10.4103/1673-5374.264470
Yu H-Y, Sun T, Wang Z, Li H, Xu D, An J, et al. Exendin-4 and linagliptin attenuate neuroinflammation in a mouse model of Parkinson’s disease. Neural Regen Res. 2023;18:1818–26.
pubmed: 36751811
Rong Y, Liu W, Wang J, Fan J, Luo Y, Li L, et al. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 2019;10:340.
pubmed: 31000697
doi: 10.1038/s41419-019-1571-8
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson’s disease: lessons from genetics. Mol Neurobiol. 2015;51:89–104.
pubmed: 24990317
doi: 10.1007/s12035-014-8787-5
Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139:977–1000.
pubmed: 32356200
doi: 10.1007/s00401-020-02157-3
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. ABBS. 2020;52:219–30.
pubmed: 32147679
doi: 10.1093/abbs/gmz156
Zhang DD, Shi N, Fang H, Ma L, Wu WP, Zhang YZ, et al. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus. Exp Ther Med. 2018;15:5100–6.
pubmed: 29805536
Nader MA, Ateyya H, El-Shafey M, El-Sherbeeny NA. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int. 2018;115:11–23.
pubmed: 29032011
doi: 10.1016/j.neuint.2017.10.006
Siddiqui N, Ali J, Parvez S, Zameer S, Najmi AK, Akhtar M. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1–42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer’s disease. Neuropharmacol. 2021;195: 108662.
doi: 10.1016/j.neuropharm.2021.108662
Liu J, Liu W, Yang H. Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci. 2018;10:792–802.
doi: 10.1021/acschemneuro.8b00356
Terrelonge M, Marder KS, Weintraub D, Alcalay RN. CSF β-amyloid 1–42 predicts progression to cognitive impairment in newly diagnosed Parkinson disease. J Mol Neurosci. 2016;58:88–92.
pubmed: 26330275
doi: 10.1007/s12031-015-0647-x
Angelopoulou E, Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med. 2018;6:255.
pubmed: 30069457
doi: 10.21037/atm.2018.04.41
Kornelius E, Lin CL, Chang HH, Li HH, Huang WN, Yang YS, et al. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci Ther. 2015;21:549–57.
pubmed: 26010513
doi: 10.1111/cns.12404
Li J, Zhang S, Li C, Li M, Ma L. Sitagliptin rescues memory deficits in Parkinsonian rats via upregulating BDNF to prevent neuron and dendritic spine loss. Neurol Res. 2018;40:736–43.
pubmed: 29781786
doi: 10.1080/01616412.2018.1474840
Jiang Y, Ma H, Wang X, Wang Z, Yang Y, Li L, et al. Protective effect of the α7 nicotinic receptor agonist PNU-282987 on dopaminergic neurons against 6-hydroxydopamine, regulating anti-neuroinflammatory and the immune balance pathways in rat. Front Aging Neurosci. 2021;12: 606927.
pubmed: 33568987
doi: 10.3389/fnagi.2020.606927
Zheng T, Ge B, Qin L, Chen B, Tian L, Gao Y, et al. Association of plasma DPP4 activity and brain-derived neurotrophic factor with moderate to severe depressive symptoms in patients with type 2 diabetes: results from a cross-sectional study. Psychosom Med. 2020;82:350–8.
pubmed: 32358323
doi: 10.1097/PSY.0000000000000796
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurother. 2020;17:252–68.
doi: 10.1007/s13311-019-00805-5
Chalichem NSS, Sai Kiran PS, Basavan D. Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease. J Drug Target. 2018;26:670–5.
pubmed: 29378454
doi: 10.1080/1061186X.2018.1433682
Bagheri V, Khorramdelazad H, Hassanshahi G, Moghadam-Ahmadi A, Vakilian A. CXCL12 and CXCR4 in the peripheral blood of patients with Parkinson’s disease. NeuroImmunoModulation. 2018;25:201–5.
pubmed: 30428473
doi: 10.1159/000494435
Fang C, Lv L, Mao S, Dong H, Liu B. Cognition deficits in Parkinson’s disease: mechanisms and treatment. Parkinson’s Dis. 2020;2020:1.
doi: 10.1155/2020/8493916
During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9:1173–9.
pubmed: 12925848
doi: 10.1038/nm919
Gault V, Lennox R, Flatt P. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes Metab. 2015;17:403–13.
pubmed: 25580570
doi: 10.1111/dom.12432
Foltynie T, Athauda D. Repurposing anti-diabetic drugs for the treatment of Parkinson’s disease: rationale and clinical experience. Prog Brain Res. 2020;252:493–523.
pubmed: 32247373
doi: 10.1016/bs.pbr.2019.10.008
Chen S, Zhou M, Sun J, Guo A, Fernando RL, Chen Y, et al. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacol. 2019;157: 107668.
doi: 10.1016/j.neuropharm.2019.107668
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6:456.
pubmed: 25897356
doi: 10.4239/wjd.v6.i3.456