Enantiomeric analysis of drugs in water samples by using liquid-liquid microextraction and nano-liquid chromatography.
chiral polysaccharide-based
enantiomeric separation
isoamyl acetate
liquid-liquid microextraction
nano-LC
Journal
Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
09
05
2023
received:
05
02
2023
accepted:
17
05
2023
medline:
17
8
2023
pubmed:
5
6
2023
entrez:
5
6
2023
Statut:
ppublish
Résumé
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid-liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).
Identifiants
pubmed: 37276371
doi: 10.1002/elps.202300025
doi:
Substances chimiques
Phenylcarbamates
0
Amylose
9005-82-7
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1177-1186Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Stinson SC. New single-isomer products on the chiral drug market create demand for enantiomeric intermediates and enantioselective technologies. Chem Eng News. 1994;72:38-50.
Xu D, Shao H, Lai L, Sánchez-López E, Marina ML, Jiang ZJ. Single-step fabrication of a teicoplanin functionalized organic-silica hybrid monolith for enantioseparation by nano-liquid chromatography. J Chromatogr Open. 2021;1:100008.
Rubio A, Görgens C, Guddat S, Pipera T, Garzinsky A-M, Kruga O, et al. Chiral analysis of selected enantiomeric drugs relevant in doping controls. J Chromatogr Open. 2021;1:100017.
Agrawal A, Kecili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry. TrAC Trends Anal Chem. 2021;143:116383.
D'Orazio G. Chiral analysis by nano-liquid chromatography. TrAC Trends Anal Chem. 2020;125:115832.
Chankvetadze B, Chankvetadze L, Sidamonidze S, Kasashima E, Yashima E, Okamoto YJ. 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Chromatogr A. 1997;787:67-77.
Dallocchio R, Dessì A, Sechi B, Chankvetadze B, Cossu S, Mamane V, et al. Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4′-bipyridines by experimental and computational analysis. J Chromatogr Open. 2022;2:00030.
Fanali S, D'Orazio G, Lomsadze K, Chankvetadze B. Enantioseparations with cellulose tris(3-chloro-4-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875:296-303.
D'Orazio G, Fanali C, Fanali S, Gentili A, Chankvetadze B. Comparative study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. J Chromatogr A. 2019;1606:460425.
Fanali S. An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography. Electrophoresis. 2017;38:1822-9.
Cruz JC, de Souza ID, Lancas FM, Queiroz, MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A. 2022;1668:462925.
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. TrAC Trends Anal Chem. 2021;136:116190.
Santana-Mayor A, Rodriguez-Ramos R, Socas-Rodriguez B, Rodriguez-Delgado MA, D'Orazio G. Nano-liquid chromatography combined with a sustainable microextraction based on natural deep eutectic solvents for analysis of phthalate esters. Electrophoresis. 2020;41:1768-75.
Uysal D, Karadaş C, Kara D. Ionic liquid dispersive liquid-liquid microextraction method for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. J AOAC Int. 2017;100:712-6.
Felli N, Dal Bosco C, Gherardi M, Fanali C, Della Posta S, Gentili A. Biomonitoring of pesticides in urine by using isoamyl acetate as a sustainable extraction solvent. J Pharm Biomed Anal. 2023;223:115150.
D'Orazio G, Asensio-Ramos M, Fanali C. Enantiomers separation by capillary electrochromatography using polysaccharide-based stationary phases. J Sep Sci. 2019;42:360-84.
Cirilli R, Carradori S, Casulli A, Pierini M. A chromatographic study on the retention behavior of the amylose tris(3-chloro-5-methylphenylcarbamate) chiral stationary phase under aqueous conditions. J Sep Sci. 2018;41:4014-21.
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D'Orazio G. Chiral nano-liquid chromatography and dispersive liquid-liquid microextraction applied to the analysis of antifungal drugs in milk. Molecules. 2021;26:7094.
Chankvetadze B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A. 2012;1269:26-51.
Marvin Sketch 19.24. ChemAxon Ltd. http://www.chemaxon.com/products/marvin
Chankvetadze B, Yasima E, Okamoto, Y. Dimethyl-, dichloro and chloromethyl-phenylcarbamate derivatives of amylose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A. 1995;694:101-9.
D'Orazio G, Fanali C, Gentili A, Fanali S. Enantioseparation of tryptophan and its unnatural derivatives by nano-LC on CSP-teicoplanin silica based. Electrophoresis. 2019;40:1966-71.
Hemström P, Knut I. Hydrophilic interaction chromatography. J Sep Sci. 2006;29:1784-821.
Evans SE, Davies P, Lubben A, Kasprzyk-Hordern B. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. Anal Chim Acta. 2015;882:112-26.
Zhao P, Deng M, Huang P, Yu J, Guo X, Zhao L. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples. Anal Bioanal Chem. 2016;408:6381-92.
Zhao P, Zhao J, Lei S, Guo, X, Zhao L. Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry. Chemosphere. 2018;204:210-9.
Gotti R, Fiori J, Calleri E, Temporini C, Lubda D, Massolini G. Chiral capillary liquid chromatography based on penicillin G acylase immobilized on monolithic epoxy silica column. J Chromatogr A. 2012;1234:45-9.
Zhang Q, Gil V, Sanchez-Lopez E, García MA, Jiang Z, Marina ML. Evaluation of the potential of a quinidine-based monolithic column on the enantiomeric separation of herbicides by nano-liquid chromatography. Microchem J. 2015;123:15-21.