Enantiomeric analysis of drugs in water samples by using liquid-liquid microextraction and nano-liquid chromatography.


Journal

Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476

Informations de publication

Date de publication:
08 2023
Historique:
revised: 09 05 2023
received: 05 02 2023
accepted: 17 05 2023
medline: 17 8 2023
pubmed: 5 6 2023
entrez: 5 6 2023
Statut: ppublish

Résumé

The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid-liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).

Identifiants

pubmed: 37276371
doi: 10.1002/elps.202300025
doi:

Substances chimiques

Phenylcarbamates 0
Amylose 9005-82-7
Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1177-1186

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Stinson SC. New single-isomer products on the chiral drug market create demand for enantiomeric intermediates and enantioselective technologies. Chem Eng News. 1994;72:38-50.
Xu D, Shao H, Lai L, Sánchez-López E, Marina ML, Jiang ZJ. Single-step fabrication of a teicoplanin functionalized organic-silica hybrid monolith for enantioseparation by nano-liquid chromatography. J Chromatogr Open. 2021;1:100008.
Rubio A, Görgens C, Guddat S, Pipera T, Garzinsky A-M, Kruga O, et al. Chiral analysis of selected enantiomeric drugs relevant in doping controls. J Chromatogr Open. 2021;1:100017.
Agrawal A, Kecili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry. TrAC Trends Anal Chem. 2021;143:116383.
D'Orazio G. Chiral analysis by nano-liquid chromatography. TrAC Trends Anal Chem. 2020;125:115832.
Chankvetadze B, Chankvetadze L, Sidamonidze S, Kasashima E, Yashima E, Okamoto YJ. 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Chromatogr A. 1997;787:67-77.
Dallocchio R, Dessì A, Sechi B, Chankvetadze B, Cossu S, Mamane V, et al. Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4′-bipyridines by experimental and computational analysis. J Chromatogr Open. 2022;2:00030.
Fanali S, D'Orazio G, Lomsadze K, Chankvetadze B. Enantioseparations with cellulose tris(3-chloro-4-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875:296-303.
D'Orazio G, Fanali C, Fanali S, Gentili A, Chankvetadze B. Comparative study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. J Chromatogr A. 2019;1606:460425.
Fanali S. An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography. Electrophoresis. 2017;38:1822-9.
Cruz JC, de Souza ID, Lancas FM, Queiroz, MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A. 2022;1668:462925.
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. TrAC Trends Anal Chem. 2021;136:116190.
Santana-Mayor A, Rodriguez-Ramos R, Socas-Rodriguez B, Rodriguez-Delgado MA, D'Orazio G. Nano-liquid chromatography combined with a sustainable microextraction based on natural deep eutectic solvents for analysis of phthalate esters. Electrophoresis. 2020;41:1768-75.
Uysal D, Karadaş C, Kara D. Ionic liquid dispersive liquid-liquid microextraction method for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. J AOAC Int. 2017;100:712-6.
Felli N, Dal Bosco C, Gherardi M, Fanali C, Della Posta S, Gentili A. Biomonitoring of pesticides in urine by using isoamyl acetate as a sustainable extraction solvent. J Pharm Biomed Anal. 2023;223:115150.
D'Orazio G, Asensio-Ramos M, Fanali C. Enantiomers separation by capillary electrochromatography using polysaccharide-based stationary phases. J Sep Sci. 2019;42:360-84.
Cirilli R, Carradori S, Casulli A, Pierini M. A chromatographic study on the retention behavior of the amylose tris(3-chloro-5-methylphenylcarbamate) chiral stationary phase under aqueous conditions. J Sep Sci. 2018;41:4014-21.
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D'Orazio G. Chiral nano-liquid chromatography and dispersive liquid-liquid microextraction applied to the analysis of antifungal drugs in milk. Molecules. 2021;26:7094.
Chankvetadze B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A. 2012;1269:26-51.
Marvin Sketch 19.24. ChemAxon Ltd. http://www.chemaxon.com/products/marvin
Chankvetadze B, Yasima E, Okamoto, Y. Dimethyl-, dichloro and chloromethyl-phenylcarbamate derivatives of amylose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A. 1995;694:101-9.
D'Orazio G, Fanali C, Gentili A, Fanali S. Enantioseparation of tryptophan and its unnatural derivatives by nano-LC on CSP-teicoplanin silica based. Electrophoresis. 2019;40:1966-71.
Hemström P, Knut I. Hydrophilic interaction chromatography. J Sep Sci. 2006;29:1784-821.
Evans SE, Davies P, Lubben A, Kasprzyk-Hordern B. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. Anal Chim Acta. 2015;882:112-26.
Zhao P, Deng M, Huang P, Yu J, Guo X, Zhao L. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples. Anal Bioanal Chem. 2016;408:6381-92.
Zhao P, Zhao J, Lei S, Guo, X, Zhao L. Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry. Chemosphere. 2018;204:210-9.
Gotti R, Fiori J, Calleri E, Temporini C, Lubda D, Massolini G. Chiral capillary liquid chromatography based on penicillin G acylase immobilized on monolithic epoxy silica column. J Chromatogr A. 2012;1234:45-9.
Zhang Q, Gil V, Sanchez-Lopez E, García MA, Jiang Z, Marina ML. Evaluation of the potential of a quinidine-based monolithic column on the enantiomeric separation of herbicides by nano-liquid chromatography. Microchem J. 2015;123:15-21.

Auteurs

Sandra Salido-Fortuna (S)

Department of Chemistry, University of "La Sapienza", Rome, Italy.
Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

Chiara Dal Bosco (CD)

Department of Chemistry, University of "La Sapienza", Rome, Italy.

Alessandra Gentili (A)

Department of Chemistry, University of "La Sapienza", Rome, Italy.

María Castro-Puyana (M)

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

María Luisa Marina (ML)

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

Giovanni D'Orazio (G)

Istituto per i Sistemi Biologici (ISB), CNR - Consiglio Nazionale delle Ricerche, Montelibretti, Rome, Italy.

Salvatore Fanali (S)

School in Nanoscience and Advanced Technologies, University of Verona, Verona, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH