Transposable elements in mammalian chromatin organization.
Journal
Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
accepted:
24
04
2023
medline:
18
9
2023
pubmed:
8
6
2023
entrez:
7
6
2023
Statut:
ppublish
Résumé
Transposable elements (TEs) are mobile DNA elements that comprise almost 50% of mammalian genomic sequence. TEs are capable of making additional copies of themselves that integrate into new positions in host genomes. This unique property has had an important impact on mammalian genome evolution and on the regulation of gene expression because TE-derived sequences can function as cis-regulatory elements such as enhancers, promoters and silencers. Now, advances in our ability to identify and characterize TEs have revealed that TE-derived sequences also regulate gene expression by both maintaining and shaping 3D genome architecture. Studies are revealing how TEs contribute raw sequence that can give rise to the structures that shape chromatin organization, and thus gene expression, allowing for species-specific genome innovation and evolutionary novelty.
Identifiants
pubmed: 37286742
doi: 10.1038/s41576-023-00609-6
pii: 10.1038/s41576-023-00609-6
doi:
Substances chimiques
DNA Transposable Elements
0
Chromatin
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
712-723Informations de copyright
© 2023. Springer Nature Limited.
Références
McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).
pubmed: 15430309
pmcid: 1063197
doi: 10.1073/pnas.36.6.344
Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989).
pubmed: 2543105
doi: 10.1016/0168-9525(89)90039-5
Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).
pubmed: 35228718
pmcid: 10470143
doi: 10.1038/s41580-022-00457-y
Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).
pubmed: 28286338
doi: 10.1038/nrg.2017.7
Cheung, S., Manhas, S. & Measday, V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob. DNA https://doi.org/10.1186/s13100-018-0119-2 (2018).
doi: 10.1186/s13100-018-0119-2
pubmed: 29713390
pmcid: 5911963
Wagstaff, B. J. et al. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet. 8, e1002842 (2012).
pubmed: 22912586
pmcid: 3415434
doi: 10.1371/journal.pgen.1002842
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
pubmed: 11237011
doi: 10.1038/35057062
Ichiyanagi, K. Regulating Pol III transcription to change Pol II transcriptome. Cell Cycle 13, 3625–3626 (2014).
pubmed: 25551358
pmcid: 4613728
doi: 10.4161/15384101.2014.980704
Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021). This study shows that TEs cluster in compartments and form distinct, segregating domains.
pubmed: 33514913
pmcid: 8169921
doi: 10.1038/s41422-020-00466-6
Campos-Sanchez, R., Cremona, M. A., Pini, A., Chiaromonte, F. & Makova, K. D. Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput. Biol. 12, e1004956 (2016).
pubmed: 27309962
pmcid: 4911145
doi: 10.1371/journal.pcbi.1004956
Kvikstad, E. M. & Makova, K. D. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res. 20, 600–613 (2010).
pubmed: 20219940
pmcid: 2860162
doi: 10.1101/gr.099044.109
Zhou, W. D., Liang, G. N., Molloy, P. L. & Jones, P. A. DNA methylation enables transposable element-driven genome expansion. Proc. Natl Acad. Sci. USA 117, 19359–19366 (2020).
pubmed: 32719115
pmcid: 7431005
doi: 10.1073/pnas.1921719117
Molaro, A. & Malik, H. S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr. Opin. Genet. Dev. 37, 51–58 (2016).
pubmed: 26821364
pmcid: 4914476
doi: 10.1016/j.gde.2015.12.001
Modzelewski, A. J., Gan Chong, J., Wang, T. & He, L. Mammalian genome innovation through transposon domestication. Nat. Cell Biol. 24, 1332–1340 (2022).
pubmed: 36008480
pmcid: 9729749
doi: 10.1038/s41556-022-00970-4
Schmitz, J. & Brosius, J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93, 1928–1934 (2011).
pubmed: 21787833
doi: 10.1016/j.biochi.2011.07.014
van de Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).
pubmed: 14550626
doi: 10.1016/j.tig.2003.08.004
Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).
pubmed: 18076328
pmcid: 2167627
doi: 10.1146/annurev.genet.40.110405.090448
Agren, J. A. & Wright, S. I. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? Chromosome Res. 19, 777–786 (2011).
pubmed: 21850458
doi: 10.1007/s10577-011-9229-0
Bogutz, A. B. et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat. Commun. 10, 5674 (2019).
pubmed: 31831741
pmcid: 6908575
doi: 10.1038/s41467-019-13662-9
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).
pubmed: 27867194
doi: 10.1038/nrg.2016.139
Choudhary, M. N. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020). This study shows that TEs provide redundant CTCF motifs that maintain chromatin organization over evolutionary time.
pubmed: 31973766
pmcid: 6979391
doi: 10.1186/s13059-019-1916-8
Kentepozidou, E. et al. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol. 21, 5 (2020).
pubmed: 31910870
pmcid: 6945661
doi: 10.1186/s13059-019-1894-x
Choudhary, M. N. K., Quaid, K., Xing, X., Schmidt, H. & Wang, T. Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes. Nat. Commun. 14, 634 (2023).
pubmed: 36746940
pmcid: 9902604
doi: 10.1038/s41467-023-36364-9
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300
pmcid: 3356448
doi: 10.1038/nature11082
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).
pubmed: 22495304
pmcid: 3555144
doi: 10.1038/nature11049
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).
pubmed: 11283701
doi: 10.1038/35066075
Dietzel, S. et al. Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res. 6, 25–33 (1998).
pubmed: 9510507
doi: 10.1023/A:1009262223693
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776
pmcid: 2858594
doi: 10.1126/science.1181369
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).
pubmed: 30367165
doi: 10.1038/s41576-018-0060-8
Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240 (2017).
pubmed: 28636604
pmcid: 5606208
doi: 10.1038/nature22822
Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).
pubmed: 33235358
doi: 10.1038/s41576-020-00303-x
Sikorska, N. & Sexton, T. Defining functionally relevant spatial chromatin domains: it is a TAD complicated. J. Mol. Biol. 432, 653–664 (2020).
pubmed: 31863747
doi: 10.1016/j.jmb.2019.12.006
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).
pubmed: 32213324
pmcid: 7222625
doi: 10.1016/j.molcel.2020.03.003
Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).
pubmed: 23706625
pmcid: 3712340
doi: 10.1016/j.cell.2013.04.053
Byrd, K. & Corces, V. G. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J. Cell Biol. 162, 565–574 (2003).
pubmed: 12925706
pmcid: 2173808
doi: 10.1083/jcb.200305013
Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).
pubmed: 22265598
doi: 10.1016/j.cell.2012.01.010
Marsano, R. M., Giordano, E., Messina, G. & Dimitri, P. A new portrait of constitutive heterochromatin: lessons from Drosophila melanogaster. Trends Genet. 35, 615–631 (2019).
pubmed: 31320181
doi: 10.1016/j.tig.2019.06.002
Sun, L. H. et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11, 1886 (2020).
pubmed: 32312999
pmcid: 7170881
doi: 10.1038/s41467-020-15809-5
Liu, Y. L. et al. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 18, e3000582 (2020).
pubmed: 31995554
pmcid: 7010299
doi: 10.1371/journal.pbio.3000582
Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).
pubmed: 25132176
doi: 10.1016/j.molcel.2014.07.009
Kumar, S., Kaur, S., Seem, K., Kumar, S. & Mohapatra, T. Understanding 3D genome organization and its effect on transcriptional gene regulation under environmental stress in plant: a chromatin perspective. Front. Cell Dev. Biol. 9, 774719 (2021).
pubmed: 34957106
pmcid: 8692796
doi: 10.3389/fcell.2021.774719
Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).
pubmed: 31848476
doi: 10.1038/s41576-019-0195-2
Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).
pubmed: 31308546
pmcid: 7116017
doi: 10.1038/s41588-019-0462-3
Williamson, I. et al. Developmentally regulated Shh expression is robust to TAD perturbations. Development 146, dev179523 (2019).
pubmed: 31511252
doi: 10.1242/dev.179523
Hanssen, L. L. P. et al. Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).
pubmed: 28737770
pmcid: 5540176
doi: 10.1038/ncb3573
Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).
pubmed: 18682548
pmcid: 2577865
doi: 10.1101/gr.080663.108
Lunyak, V. V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).
pubmed: 17626886
doi: 10.1126/science.1140871
Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).
pubmed: 22244452
pmcid: 3368268
doi: 10.1016/j.cell.2011.11.058
Ringel, A. R. et al. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 185, 3689–3704.e21 (2022).
pubmed: 36179666
pmcid: 9567273
doi: 10.1016/j.cell.2022.09.006
Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e20 (2018).
pubmed: 29706548
pmcid: 6065110
doi: 10.1016/j.cell.2018.03.072
Barrington, C. et al. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat. Commun. 10, 2908 (2019).
pubmed: 31266948
pmcid: 6606583
doi: 10.1038/s41467-019-10725-9
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).
pubmed: 27210764
pmcid: 4889513
doi: 10.1016/j.celrep.2016.04.085
Chang, L. H., Ghosh, S. & Noordermeer, D. TADs and their borders: free movement or building a wall? J. Mol. Biol. 432, 643–652 (2020).
pubmed: 31887284
doi: 10.1016/j.jmb.2019.11.025
Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).
pubmed: 25959774
pmcid: 4791538
doi: 10.1016/j.cell.2015.04.004
Despang, A. et al. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263-1271 (2019).
pubmed: 31358994
doi: 10.1038/s41588-019-0466-z
Chen, H. T. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296-1303 (2018).
pubmed: 30038397
pmcid: 6119122
doi: 10.1038/s41588-018-0175-z
Matthews, B. J. & Waxman, D. J. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver. eLife https://doi.org/10.7554/eLife.34077 (2018).
doi: 10.7554/eLife.34077
pubmed: 29757144
pmcid: 5986275
Diehl, A. G., Ouyang, N. & Boyle, A. P. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat. Commun. 11, 1796 (2020). This study shows that differential TE exaptations between human and mouse contribute to differential looping that is associated with species-specific gene expression.
pubmed: 32286261
pmcid: 7156512
doi: 10.1038/s41467-020-15520-5
Lleres, D. et al. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol. 20, 272 (2019).
pubmed: 31831055
pmcid: 6909504
doi: 10.1186/s13059-019-1896-8
Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).
pubmed: 31925403
pmcid: 7567612
doi: 10.1038/s41588-019-0561-1
Wang, J. et al. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl Acad. Sci. USA 112, E4428–E4437 (2015).
pubmed: 26216945
pmcid: 4538669
Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019). This study shows that HERV-H family TEs serve as both TAD boundary elements and enhancers during pluripotency.
pubmed: 31427791
pmcid: 6722002
doi: 10.1038/s41588-019-0479-7
Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).
pubmed: 28874668
pmcid: 5585340
doi: 10.1038/s41467-017-00524-5
Cournac, A., Koszul, R. & Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 44, 245–255 (2016).
pubmed: 26609133
doi: 10.1093/nar/gkv1292
Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Buhler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14 (2019).
pubmed: 31491387
doi: 10.1016/j.cell.2019.08.007
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and disease. Nat. Rev. Genet. 22, 324–336 (2021).
pubmed: 33442000
pmcid: 8068586
doi: 10.1038/s41576-020-00311-x
Lin, X. et al. Nested epistasis enhancer networks for robust genome regulation. Science 377, 1077–1085 (2022).
pubmed: 35951677
pmcid: 10259245
doi: 10.1126/science.abk3512
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e922 (2017). This study shows that CTCF is required to maintain chromatin organization and proper transcriptional activity.
pubmed: 28525758
pmcid: 5538188
doi: 10.1016/j.cell.2017.05.004
Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).
pubmed: 25722416
pmcid: 4428148
doi: 10.1126/science.1262088
Symmons, O. et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39, 529–543 (2016).
pubmed: 27867070
pmcid: 5142843
doi: 10.1016/j.devcel.2016.10.015
Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019).
pubmed: 31147463
pmcid: 6589666
doi: 10.1073/pnas.1900672116
Ichiyanagi, T. et al. B2 SINE copies serve as a transposable boundary of DNA methylation and histone modifications in the mouse. Mol. Biol. Evol. 38, 2380–2395 (2021).
pubmed: 33592095
pmcid: 8136502
doi: 10.1093/molbev/msab033
Kruse, K. et al. Transposable elements drive reorganization of 3D chromatin during early embryogenesis. Preprint at bioRxiv https://doi.org/10.1101/523712 (2019).
doi: 10.1101/523712
Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306–310 (2019).
pubmed: 31801998
doi: 10.1038/s41586-019-1812-0
Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).
pubmed: 24398455
pmcid: 3941104
doi: 10.1101/gr.163519.113
Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).
pubmed: 30454069
pmcid: 6240941
doi: 10.1186/s13059-018-1577-z
Glinsky, G. V. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Chromosome Res. 26, 61–84 (2018).
pubmed: 29335803
doi: 10.1007/s10577-018-9571-6
Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190347 (2020).
doi: 10.1098/rstb.2019.0347
Davidson, E. H. & Britten, R. J. Regulation of gene-expression — possible role of repetitive sequences. Science 204, 1052–1059 (1979).
pubmed: 451548
doi: 10.1126/science.451548
Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).
pubmed: 25319995
pmcid: 4248313
doi: 10.1101/gr.168872.113
Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).
pubmed: 20526341
doi: 10.1038/ng.600
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).
pubmed: 26941318
pmcid: 4887275
doi: 10.1126/science.aad5497
Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).
pubmed: 21946353
doi: 10.1038/ng.917
Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558.e22 (2021).
pubmed: 34644528
pmcid: 8787082
doi: 10.1016/j.cell.2021.09.021
Huda, A., Bowen, N. J., Conley, A. B. & Jordan, I. K. Epigenetic regulation of transposable element derived human gene promoters. Gene 475, 39–48 (2011).
pubmed: 21215797
doi: 10.1016/j.gene.2010.12.010
Franke, V. et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 27, 1384–1394 (2017).
pubmed: 28522611
pmcid: 5538554
doi: 10.1101/gr.216150.116
Pasquesi, G. I. M. et al. Vertebrate lineages exhibit diverse patterns of transposable element regulation and expression across tissues. Genome Biol. Evol. 12, 506–521 (2020).
pubmed: 32271917
pmcid: 7211425
doi: 10.1093/gbe/evaa068
Miao, B. et al. Tissue-specific usage of transposable element-derived promoters in mouse development. Genome Biol. 21, 255 (2020).
pubmed: 32988383
pmcid: 7520981
doi: 10.1186/s13059-020-02164-3
Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).
pubmed: 10545949
doi: 10.1038/15490
Beyer, U., Moll-Rocek, J., Moll, U. M. & Dobbelstein, M. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc. Natl Acad. Sci. USA 108, 3624–3629 (2011).
pubmed: 21300884
pmcid: 3048127
doi: 10.1073/pnas.1016201108
Notwell, J. H., Chung, T., Heavner, W. & Bejerano, G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 6, 6644 (2015).
pubmed: 25806706
doi: 10.1038/ncomms7644
Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).
pubmed: 16625209
doi: 10.1038/nature04696
Nishihara, H. et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet. 12, e1006380 (2016).
pubmed: 27741242
pmcid: 5065162
doi: 10.1371/journal.pgen.1006380
Nishihara, H., Smit, A. F. & Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874 (2006).
pubmed: 16717141
pmcid: 1484453
doi: 10.1101/gr.5255506
Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015).
pubmed: 26365491
pmcid: 4848043
doi: 10.1016/j.cell.2015.08.036
Judd, J., Sanderson, H. & Feschotte, C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol. 22, 193 (2021).
pubmed: 34187518
pmcid: 8240256
doi: 10.1186/s13059-021-02409-9
Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020). This study shows that TE-mediated formation of promotors may hold together a transcriptional hub that shapes chromatin organization in the developing brain.
pubmed: 33057195
pmcid: 7704572
doi: 10.1038/s41586-020-2825-4
Cao, Y. et al. Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res. 29, 40–52 (2019). This study shows that TEs have a widespread role as enhancer-like sequences that contribute to both cell and lineage specificity, and describes the long-range interactions of the MIR and LINE-2 TE families.
pubmed: 30455182
pmcid: 6314169
doi: 10.1101/gr.235747.118
Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).
pubmed: 32976797
pmcid: 7541718
doi: 10.1016/j.cell.2020.09.014
Paulsen, J. et al. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nat. Genet. 51, 835–843 (2019).
pubmed: 31011212
doi: 10.1038/s41588-019-0392-0
He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).
pubmed: 33674594
pmcid: 7935913
doi: 10.1038/s41467-021-21808-x
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pmcid: 4530010
doi: 10.1038/nature14248
Burns, K. H. Repetitive DNA in disease. Science 376, 353–354 (2022).
pubmed: 35446653
doi: 10.1126/science.abl7399
Burns, K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol.-Mech. 15, 51–70 (2020).
doi: 10.1146/annurev-pathmechdis-012419-032633
Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319-331.e8 (2017).
pubmed: 28803918
pmcid: 5591075
doi: 10.1016/j.stem.2017.07.009
Haws, S. A., Simandi, Z., Barnett, R. J. & Phillips-Cremins, J. E. 3D genome, on repeat: higher-order folding principles of the heterochromatinized repetitive genome. Cell 185, 2690–2707 (2022).
pubmed: 35868274
pmcid: 10225251
doi: 10.1016/j.cell.2022.06.052
Saksouk, N., Simboeck, E. & Dejardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 8, 3 (2015).
pubmed: 25788984
pmcid: 4363358
doi: 10.1186/1756-8935-8-3
Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).
pubmed: 30044650
doi: 10.1146/annurev-cellbio-100617-062653
Marsano, R. M. & Dimitri, P. Constitutive heterochromatin in eukaryotic genomes: a mine of transposable elements. Cells https://doi.org/10.3390/cells11050761 (2022).
doi: 10.3390/cells11050761
pubmed: 36231024
pmcid: 9563267
Pimpinelli, S. et al. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl Acad. Sci. USA 92, 3804–3808 (1995).
pubmed: 7731987
pmcid: 42050
doi: 10.1073/pnas.92.9.3804
Zamudio, N. & Bourc’his, D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity 105, 92–104 (2010).
pubmed: 20442734
doi: 10.1038/hdy.2010.53
Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).
pubmed: 23211769
pmcid: 3645987
doi: 10.1038/nsmb.2436
Risca, V. I., Denny, S. K., Straight, A. F. & Greenleaf, W. J. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237 (2017).
pubmed: 28024297
doi: 10.1038/nature20781
Oh, I., Choi, S., Jung, Y. & Kim, J. S. Entropic effect of macromolecular crowding enhances binding between nucleosome clutches in heterochromatin, but not in euchromatin. Sci. Rep. 8, 5469 (2018).
pubmed: 29615710
pmcid: 5882907
doi: 10.1038/s41598-018-23753-0
Singh, P. B. & Newman, A. G. On the relations of phase separation and Hi-C maps to epigenetics. Roy. Soc. Open Sci. 7, 191976 (2020).
doi: 10.1098/rsos.191976
Trono, D. Transposable elements, polydactyl proteins, and the genesis of human-specific transcription networks. Cold Spring Harb. Symp. Quant. Biol. 80, 281–288 (2015).
pubmed: 26763983
doi: 10.1101/sqb.2015.80.027573
Spracklin, G. et al. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat. Struct. Mol. Biol. 30, 38–51 (2023).
pubmed: 36550219
doi: 10.1038/s41594-022-00892-7
Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).
pubmed: 23140366
doi: 10.1146/annurev-physiol-030212-183653
Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).
pubmed: 24238962
doi: 10.1016/j.cell.2013.10.019
van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).
pubmed: 24848057
pmcid: 4214092
doi: 10.1038/nature13193
Chojnowski, A. et al. Heterochromatin loss as a determinant of progerin-induced DNA damage in Hutchinson–Gilford progeria. Aging Cell 19, e13108 (2020).
pubmed: 32087607
pmcid: 7059134
doi: 10.1111/acel.13108
Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).
pubmed: 23360310
doi: 10.1111/acel.12047
Zhang, X. L. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).
pubmed: 34140314
pmcid: 8256869
doi: 10.1101/gr.275235.121
Della Valle, F. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022).
pubmed: 35947677
doi: 10.1126/scitranslmed.abl6057
Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4, 21–41 (2021).
pubmed: 34465168
doi: 10.1146/annurev-biodatasci-020121-084709
Galitsyna, A. A. & Gelfand, M. S. Single-cell Hi-C data analysis: safety in numbers. Brief. Bioinform. https://doi.org/10.1093/bib/bbab316 (2021).
doi: 10.1093/bib/bbab316
pubmed: 34406348
pmcid: 8575028
Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, 57 (2022).
doi: 10.1126/science.abk3112
Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).
pubmed: 35444317
pmcid: 9402379
doi: 10.1038/s41586-022-04601-8
Taberlay, P. C. et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719–731 (2016).
pubmed: 27053337
pmcid: 4889976
doi: 10.1101/gr.201517.115
Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).
pubmed: 30926969
pmcid: 6443099
doi: 10.1038/s41588-019-0373-3
O’Neill, K., Brocks, D. & Hammell, M. G. Mobile genomics: tools and techniques for tackling transposons. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190345 (2020).
pubmed: 32075565
pmcid: 7061981
doi: 10.1098/rstb.2019.0345
Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).
pubmed: 30232369
doi: 10.1038/s41576-018-0050-x
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
pubmed: 26045719
pmcid: 4455052
doi: 10.1186/s13100-015-0041-9
Smit, A. F., Hubley, R. & Green, P. RepeatMasker Open-4.0. Institute for Systems Biology http://www.repeatmasker.org (2015).
Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).
pubmed: 12176934
pmcid: 186642
doi: 10.1101/gr.88502
Smit, A. F. & Hubley, R. RepeatModeler 1.0.11. Institute for Systems Biology http://www.repeatmasker.org/RepeatModeler/ (2018).
Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).
pubmed: 23376349
doi: 10.1093/bioinformatics/btt054
Taylor, D. & Branco, M. R. Inferring protein–DNA binding profiles at interspersed repeats using HiChIP and PAtChER. Methods Mol. Biol. 2607, 199–214 (2023).
pubmed: 36449165
doi: 10.1007/978-1-0716-2883-6_11