Pulmonary hypertension associated with left heart disease.
Pulmonale Hypertonie in Verbindung mit Linksherzerkrankungen.
Cardiomyopathy
Heart failure
Hemodynamics
Pulmonary artery pressure
Valvular heart disease
Journal
Herz
ISSN: 1615-6692
Titre abrégé: Herz
Pays: Germany
ID NLM: 7801231
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
accepted:
27
04
2023
medline:
2
8
2023
pubmed:
8
6
2023
entrez:
8
6
2023
Statut:
ppublish
Résumé
Pulmonary hypertension (PH) is a common condition in patients with left heart disease (LHD) that is highly relevant for morbidity and mortality. While post-capillary in nature, the pathophysiology of PH in patients with LHD (heart failure/cardiomyopathy, valvular heart disease; other: congenital/acquired) is complex, and decisions about management strategies are challenging. Recently, the updated European Society of Cardiology/European Respiratory Society guidelines on the diagnosis and treatment of PH revisited hemodynamic definitions and the sub-classification of post-capillary PH, and provided numerous new recommendations on the diagnosis and management of PH associated with various types of LHD. Here, we review several novel aspects that focus on: (a) updated hemodynamic definitions, including the distinction between isolated post-capillary PH (IpcPH) and combined post- and pre-capillary PH (CpcPH); (b) the pathogenesis of PH-LHD, considering various components contributing to PH, such as pulmonary congestion, vasoconstriction, and vascular remodeling; (c) the prognostic relevance of PH and hemodynamic markers; (d) the diagnostic approach to PH-LHD; (e) management strategies in PH-LHD, distinguishing between targeting the underlying left heart condition, the pulmonary circulation, and/or impaired right ventricular function. In conclusion, precise clinical and hemodynamic characterization and detailed phenotyping are essential for prognostication and the management of patients with PH-LHD. Pulmonale Hypertonie (PH) ist bei Patienten mit Linksherzerkrankungen (LHD) häufig und für Morbidität und Mortalität hoch relevant. Obgleich die primäre Genese postkapillärer Natur ist, ist die Pathophysiologie der PH bei Patienten mit LHD (Herzinsuffizienz/Kardiomyopathie, Klappenvitien; andere: kongenital/erworben) komplex, und Entscheidungen zu Behandlungsstrategien können herausfordernd sein. Kürzlich wurden in den aktualisierten Leitlinien der European Society of Cardiology (ESC) und der European Respiratory Society (ERS) zur Diagnose und Therapie der PH die hämodynamischen Definitionen und die Subklassifikation der postkapillären PH überarbeitet, zudem finden sich darin zahlreiche neue Empfehlungen zur Diagnostik und Behandlung der mit verschiedenen Formen von LHD assoziierten PH. In der vorliegenden Übersicht werden zahlreiche Neuerungen zusammengefasst, mit Fokus auf: (a) die aktualisierten hämodynamischen Definitionen, inklusive der Unterscheidung zwischen isoliert postkapillärer PH (IpcPH) und kombiniert post- und präkapillärer PH (CpcPH); (b) die Pathogenese der PH-LHD, unter Berücksichtigung verschiedener Komponenten, die zur Entstehung einer PH beitragen, wie pulmonale Stauung, Vasokonstriktion und vaskuläres Remodeling; (c) die prognostische Relevanz der PH und hämodynamischer Marker; (d) das diagnostische Vorgehen bei PH-LHD; (e) Behandlungsstrategien bei PH-LHD, die auf die zugrunde liegende LHD, die pulmonale Zirkulation und/oder eine eingeschränkte rechtsventrikuläre Funktion abzielen. Zusammenfassend sind eine präzise klinische und hämodynamische Charakterisierung sowie eine detaillierte Phänotypisierung essenziell für die Beurteilung der Prognose und die Behandlungsstrategien von Patienten mit PH-LHD.
Autres résumés
Type: Publisher
(ger)
Pulmonale Hypertonie (PH) ist bei Patienten mit Linksherzerkrankungen (LHD) häufig und für Morbidität und Mortalität hoch relevant. Obgleich die primäre Genese postkapillärer Natur ist, ist die Pathophysiologie der PH bei Patienten mit LHD (Herzinsuffizienz/Kardiomyopathie, Klappenvitien; andere: kongenital/erworben) komplex, und Entscheidungen zu Behandlungsstrategien können herausfordernd sein. Kürzlich wurden in den aktualisierten Leitlinien der European Society of Cardiology (ESC) und der European Respiratory Society (ERS) zur Diagnose und Therapie der PH die hämodynamischen Definitionen und die Subklassifikation der postkapillären PH überarbeitet, zudem finden sich darin zahlreiche neue Empfehlungen zur Diagnostik und Behandlung der mit verschiedenen Formen von LHD assoziierten PH. In der vorliegenden Übersicht werden zahlreiche Neuerungen zusammengefasst, mit Fokus auf: (a) die aktualisierten hämodynamischen Definitionen, inklusive der Unterscheidung zwischen isoliert postkapillärer PH (IpcPH) und kombiniert post- und präkapillärer PH (CpcPH); (b) die Pathogenese der PH-LHD, unter Berücksichtigung verschiedener Komponenten, die zur Entstehung einer PH beitragen, wie pulmonale Stauung, Vasokonstriktion und vaskuläres Remodeling; (c) die prognostische Relevanz der PH und hämodynamischer Marker; (d) das diagnostische Vorgehen bei PH-LHD; (e) Behandlungsstrategien bei PH-LHD, die auf die zugrunde liegende LHD, die pulmonale Zirkulation und/oder eine eingeschränkte rechtsventrikuläre Funktion abzielen. Zusammenfassend sind eine präzise klinische und hämodynamische Charakterisierung sowie eine detaillierte Phänotypisierung essenziell für die Beurteilung der Prognose und die Behandlungsstrategien von Patienten mit PH-LHD.
Identifiants
pubmed: 37289211
doi: 10.1007/s00059-023-05189-z
pii: 10.1007/s00059-023-05189-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
266-273Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Références
Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43:3618–3731
pubmed: 36017548
doi: 10.1093/eurheartj/ehac237
Rosenkranz S, Gibbs JSR, Wachter R et al (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954
pubmed: 26508169
doi: 10.1093/eurheartj/ehv512
Guazzi M, Naeije R (2017) Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 69:1718–1734
pubmed: 28359519
doi: 10.1016/j.jacc.2017.01.051
Vachiéry J‑L, Tedford RJ, Rosenkranz S et al (2019) Pulmonary hypertension due to left heart disease. Eur Respir J. https://doi.org/10.1183/13993003.01897-2018
doi: 10.1183/13993003.01897-2018
pubmed: 31558657
pmcid: 6351334
Obokata M, Reddy YNV, Melenovsky V et al (2019) Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J 40:689–697
pubmed: 30544228
doi: 10.1093/eurheartj/ehy809
Melenovsky V, Hwang SJ, Lin G et al (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462
pubmed: 24875795
pmcid: 4425842
doi: 10.1093/eurheartj/ehu193
Omote K, Sorimachi H, Obokata M et al (2022) Pulmonary vascular disease in pulmonary hypertension due to left heart disease: pathophysiologic implications. Eur Heart J 43:3417–3431
pubmed: 35796488
pmcid: 9794188
doi: 10.1093/eurheartj/ehac184
Tichelbäcker T, Dumitrescu D, Gerhardt F et al (2019) Pulmonary hypertension and valvular heart disease. Herz 44:491–501
pubmed: 31312873
doi: 10.1007/s00059-019-4823-6
Maron BA, Hess E, Maddox TM et al (2016) Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the veterans affairs clinical assessment, reporting, and tracking program. Circulation 133:1240–1248
pubmed: 26873944
pmcid: 4811678
doi: 10.1161/CIRCULATIONAHA.115.020207
Douschan P, Kovacs G, Avian A et al (2018) Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am J Respir Crit Care Med 197:509–516
pubmed: 29099619
doi: 10.1164/rccm.201706-1215OC
Kolte D, Lakshmanan S, Jankowich MD et al (2018) Mild pulmonary hypertension is associated with increased mortality: a systematic review and meta-analysis. J Am Heart Assoc 7:e9729
pubmed: 30371195
pmcid: 6222957
doi: 10.1161/JAHA.118.009729
Maron BA, Brittain EL, Hess E et al (2020) Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 8:873–884
pubmed: 32730752
pmcid: 8219057
doi: 10.1016/S2213-2600(20)30317-9
Vanderpool RR, Saul M, Nouraie M et al (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol 3:298–306
pubmed: 29541759
pmcid: 5875307
doi: 10.1001/jamacardio.2018.0128
Palazzini M, Dardi F, Manes A et al (2018) Pulmonary hypertension due to left heart disease: analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and insights for future changes. Eur J Heart Fail 20:248–255
pubmed: 28464427
doi: 10.1002/ejhf.860
Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM (2020) Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 141:678–693
pubmed: 32091921
doi: 10.1161/CIRCULATIONAHA.116.022362
Tello K, Wan J, Dalmer A et al (2019) Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging 12:e9047
pubmed: 31500448
pmcid: 7099862
doi: 10.1161/CIRCIMAGING.119.009047
Fauvel C, Raitiere O, Boucly A et al (2022) Interest of TAPSE/sPAP ratio for noninvasive pulmonary arterial hypertension risk assessment. J Heart Lung Transplant 41:1761–1772
pubmed: 36202691
doi: 10.1016/j.healun.2022.09.005
Guazzi M, Dixon D, Labate V et al (2017) RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 10:1211–1221
pubmed: 28412423
doi: 10.1016/j.jcmg.2016.12.024
Huston JH, Maron BA, French J et al (2019) Association of mild echocardiographic pulmonary hypertension with mortality and right ventricular function. JAMA Cardiol 4:1112–1121
pubmed: 31532457
pmcid: 6751783
doi: 10.1001/jamacardio.2019.3345
McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726
pubmed: 34447992
doi: 10.1093/eurheartj/ehab368
Vahanian A, Beyersdorf F, Praz F et al (2022) 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 43:561–632
pubmed: 34453165
doi: 10.1093/eurheartj/ehab395
Gaemperli O, Moccetti M, Surder D et al (2012) Acute haemodynamic changes after percutaneous mitral valve repair: relation to mid-term outcomes. Heart 98:126–132
pubmed: 21983251
doi: 10.1136/heartjnl-2011-300705
Tigges E, Blankenberg S, von Bardeleben RS et al (2018) Implication of pulmonary hypertension in patients undergoing MitraClip therapy: results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 20:585–594
pubmed: 29575435
doi: 10.1002/ejhf.864
O’Sullivan CJ, Wenaweser P, Ceylan O et al (2015) Effect of pulmonary hypertension hemodynamic presentation on clinical outcomes in patients with severe symptomatic aortic valve stenosis undergoing transcatheter aortic valve implantation: insights from the new proposed pulmonary hypertension classification. Circ Cardiovasc Interv 8:e2358
pubmed: 26156149
doi: 10.1161/CIRCINTERVENTIONS.114.002358
Bermejo J, González-Mansilla A, Mombiela T et al (2021) Persistent pulmonary hypertension in corrected valvular heart disease: hemodynamic insights and long-term survival. J Am Heart Assoc 10(2):e19949
pubmed: 33399006
pmcid: 7955299
doi: 10.1161/JAHA.120.019949
Bermejo J, Yotti R, García-Orta R et al (2018) Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J 39:1255–1264
pubmed: 29281101
doi: 10.1093/eurheartj/ehx700
Abraham WT, Perl L (2017) Implantable hemodynamic monitoring for heart failure patients. J Am Coll Cardiol 70:389–398
pubmed: 28705321
doi: 10.1016/j.jacc.2017.05.052
Abraham WT, Stevenson LW, Bourge RC et al (2016) Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387:453–461
pubmed: 26560249
doi: 10.1016/S0140-6736(15)00723-0
Lindenfeld J, Zile MR, Desai AS et al (2021) Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet 398:991–1001
pubmed: 34461042
doi: 10.1016/S0140-6736(21)01754-2
Shavelle DM, Desai AS, Abraham WT et al (2020) Lower rates of heart failure and all-cause hospitalizations during pulmonary artery pressure-guided therapy for ambulatory heart failure: one-year outcomes from the CardioMEMS post-approval study. Circ Heart Fail 13(8):e6863
pubmed: 32757642
pmcid: 7434214
doi: 10.1161/CIRCHEARTFAILURE.119.006863
Angermann C, Assmus B, Anker SD et al (2020) Pulmonary artery pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European monitoring study for heart failure (MEMS-HF). Eur J Heart Fail 22:1891–1901
pubmed: 32592227
doi: 10.1002/ejhf.1943
Aßmus B, Angermann CE, Alkhlout B et al (2022) Treatment response to heart failure management guided by remote pulmonary-artery-pressure-monitoring depends on presence and severity of pulmonary hypertension. Eur J Heart Fail 24:2320–2330
pubmed: 36054647
Tran JS, Havakuk O, McLeod JM et al (2021) Acute pulmonary pressure change after transition to sacubitril/valsartan in patients with heart failure reduced ejection fraction. ESC Heart Fail 8:1706–1710
pubmed: 33522140
pmcid: 8006690
doi: 10.1002/ehf2.13225
Codina P, Domingo M, Barceló E et al (2022) Sacubitril/valsartan affects pulmonary arterial pressure in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Fail 9:2170–2180
pubmed: 35588235
pmcid: 9288803
doi: 10.1002/ehf2.13952
Mullens W, Martens P, Forouzan O et al (2020) Effects of dapagliflozin on congestion assessed by remote pulmonary artery pressure monitoring. ESC Heart Fail 7:2071–2073
pubmed: 32588973
pmcid: 7524114
doi: 10.1002/ehf2.12850
Nassif ME, Qintar M, Windsor SL et al (2021) Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 143:1673–1686
pubmed: 33550815
doi: 10.1161/CIRCULATIONAHA.120.052503
Packer M, McMurray JJV, Krum H et al (2017) Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: primary results of the ENABLE trials. JACC Heart Fail 5:317–326
pubmed: 28449795
doi: 10.1016/j.jchf.2017.02.021
Vachiery JL, Delcroix M, Al-Hiti H et al (2018) Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J 51:1701886
pubmed: 29437943
doi: 10.1183/13993003.01886-2017
the SERENADE Investigators, Shah SJ, Bonderman D, Borlaug BA et al A study to evaluate whether macitentan is an effective and safe treatment for patients with heart failure with preserved ejection fraction and pulmonary vascular disease (SERENADE). Presented at HFA Heart Failure 2022, Madrid (Abstract)
Califf RM, Adams KF, McKenna WJ et al (1997) A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: the Flolan international randomized survival trial (FIRST). Am Heart J 134:44–54
pubmed: 9266782
doi: 10.1016/S0002-8703(97)70105-4
Rosenkranz S, Lang IM, Blind R et al (2018) Pulmonary hypertension associated with left heart disease: updated recommendations of the Cologne consensus conference 2018. Int J Cardiol 272S:53–62
pubmed: 30527996
doi: 10.1016/j.ijcard.2018.08.080
Cooper TJ, Cleland JGF, Guazzi M et al (2022) Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study): a randomized placebo-controlled multicentre trial. Eur J Heart Fail 24:1239–1248
pubmed: 35596935
doi: 10.1002/ejhf.2527
Hoendermis E, Liu LCY, Hummel YM et al (2015) Effects of sildenafil on invasive hemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 36:2565–2573
pubmed: 26188003
doi: 10.1093/eurheartj/ehv336
Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase‑5 inhibition in a 1-year study. Circulation 124:164–174
pubmed: 21709061
doi: 10.1161/CIRCULATIONAHA.110.983866
Opitz CF, Hoeper MM, Gibbs JS et al (2016) Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol 68:368–378
pubmed: 27443433
doi: 10.1016/j.jacc.2016.05.047
Kramer T, Dumitrescu D, Gerhardt F et al (2019) Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post- and pre-capillary pulmonary hypertension. Int J Cardiol 283:152–158
pubmed: 30777406
doi: 10.1016/j.ijcard.2018.12.078
SOCRATES-REDUCED Investigators, Gheorghiade M, Greene SJ, Butler J et al (2015) Effect of Vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: The SOCRATES-REDUCED randomized trial. JAMA 314:2251–2262
doi: 10.1001/jama.2015.15734
Pieske B, Maggioni AP, Lam CSP et al (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the soluble guanylate cyclase stimulator in heart failure patients with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 38:1119–1127
pubmed: 28369340
pmcid: 5400074
doi: 10.1093/eurheartj/ehw593
Filippatos G, Maggioni AP, Lam CSP et al (2017) Patient-reported outcomes in the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED ejection fraction (SOCRATES-PRESERVED) study. Eur J Heart Fail 19:782–791
pubmed: 28586537
doi: 10.1002/ejhf.800
Armstrong PW, Pieske B, Anstrom KJ et al (2020) Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 382:1883–1893
pubmed: 32222134
doi: 10.1056/NEJMoa1915928
Bonderman D, Ghio S, Felix SB et al (2013) Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128:502–511
pubmed: 23775260
doi: 10.1161/CIRCULATIONAHA.113.001458
Dachs TM, Duca F, Rettl R et al (2022) Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: the haemoDYNAMIC trial. Eur Heart J 43:3402–3413
pubmed: 35909264
pmcid: 9492239
doi: 10.1093/eurheartj/ehac389
Hoeper MM, Badesch DB, Ghofrani HA et al (2023) A phase 3 trial of Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med 388:1478–1490
pubmed: 36877098
doi: 10.1056/NEJMoa2213558