Vertically integrated spiking cone photoreceptor arrays for color perception.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 06 2023
10 06 2023
Historique:
received:
16
11
2022
accepted:
31
05
2023
medline:
12
6
2023
pubmed:
11
6
2023
entrez:
10
6
2023
Statut:
epublish
Résumé
The cone photoreceptors in our eyes selectively transduce the natural light into spiking representations, which endows the brain with high energy-efficiency color vision. However, the cone-like device with color-selectivity and spike-encoding capability remains challenging. Here, we propose a metal oxide-based vertically integrated spiking cone photoreceptor array, which can directly transduce persistent lights into spike trains at a certain rate according to the input wavelengths. Such spiking cone photoreceptors have an ultralow power consumption of less than 400 picowatts per spike in visible light, which is very close to biological cones. In this work, lights with three wavelengths were exploited as pseudo-three-primary colors to form 'colorful' images for recognition tasks, and the device with the ability to discriminate mixed colors shows better accuracy. Our results would enable hardware spiking neural networks with biologically plausible visual perception and provide great potential for the development of dynamic vision sensors.
Identifiants
pubmed: 37301894
doi: 10.1038/s41467-023-39143-8
pii: 10.1038/s41467-023-39143-8
pmc: PMC10257685
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3444Informations de copyright
© 2023. The Author(s).
Références
Adv Mater. 2022 May;34(20):e2201895
pubmed: 35305270
Adv Mater. 2022 Jun;34(24):e2201608
pubmed: 35436369
Nat Nanotechnol. 2019 Aug;14(8):776-782
pubmed: 31308498
Sensors (Basel). 2022 Aug 06;22(15):
pubmed: 35957444
Development. 2004 Oct;131(19):4677-86
pubmed: 15329347
Adv Sci (Weinh). 2020 Jul 26;7(18):2001842
pubmed: 32999852
Adv Mater. 2020 Apr;32(15):e1902434
pubmed: 31364219
Adv Sci (Weinh). 2022 Mar;9(7):e2103494
pubmed: 35023640
Nano Lett. 2020 Nov 11;20(11):8015-8023
pubmed: 33063511
Nature. 2012 May 16;485(7398):372-5
pubmed: 22596161
Nat Commun. 2012 Mar 13;3:732
pubmed: 22415823
Clin Exp Ophthalmol. 2017 Sep;45(7):730-741
pubmed: 28334493
Science. 2005 Nov 18;310(5751):1148-50
pubmed: 16293752
Neuron. 2012 Oct 18;76(2):266-80
pubmed: 23083731
Adv Mater. 2012 May 15;24(19):2631-6
pubmed: 22499356
Adv Mater. 2022 Jun;34(24):e2200481
pubmed: 35429020
Nat Commun. 2022 Jul 8;13(1):3973
pubmed: 35803938
Nat Commun. 2020 Sep 14;11(1):4602
pubmed: 32929071
ACS Nano. 2021 Oct 26;15(10):16422-16431
pubmed: 34597014
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14063-8
pubmed: 16157876
Nat Commun. 2020 Jan 2;11(1):51
pubmed: 31896758
Nat Commun. 2019 Jan 8;10(1):81
pubmed: 30622251
Neuron. 2005 Nov 23;48(4):555-62
pubmed: 16301173
Nat Commun. 2019 Aug 1;10(1):3453
pubmed: 31371705
Nat Commun. 2018 Nov 30;9(1):5106
pubmed: 30504804
Nat Commun. 2021 Oct 13;12(1):5979
pubmed: 34645801
Glob Chall. 2019 Aug 07;3(11):1900015
pubmed: 31692992
Adv Mater. 2018 Nov;30(46):e1803961
pubmed: 30252955
Nat Commun. 2022 Nov 3;13(1):6590
pubmed: 36329017
J Neural Eng. 2006 Dec;3(4):257-67
pubmed: 17124329
Nano Lett. 2022 Jan 12;22(1):81-89
pubmed: 34962129
Adv Mater. 2017 Aug;29(30):
pubmed: 28605067
Nano Lett. 2020 Dec 9;20(12):8781-8788
pubmed: 33238098
Nat Commun. 2020 Jul 13;11(1):3481
pubmed: 32661226
Science. 2018 Jun 1;360(6392):998-1003
pubmed: 29853682