Identification and characterization of an abundant lipoprotein from Methylacidiphilum fumariolicum SolV.

Acidophile Cell wall Lipoprotein Methanotroph Methylacidiphilum Peptidoglycan Verrucomicrobiota

Journal

Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427

Informations de publication

Date de publication:
12 Jun 2023
Historique:
received: 05 04 2023
accepted: 30 05 2023
revised: 17 05 2023
medline: 14 6 2023
pubmed: 12 6 2023
entrez: 12 6 2023
Statut: epublish

Résumé

Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor into bacterial cell membranes. These lipoproteins play essential roles in a wide variety of physiological processes. Based on transcriptome analysis of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV, we identified a highly expressed lipoprotein, WP_009060351 (139 amino acids), in its genome. The first 86 amino acids are specific for the methanotrophic genera Methylacidiphilum and Methylacidmicrobium, while the last 53 amino acids are present only in lipoproteins of members from the phylum Verrucomicrobiota (Hedlund). Heterologous expression of WP_009060351 in Escherichia coli revealed a 25-kDa dimeric protein and a 60-kDa tetrameric protein. Immunoblotting showed that WP_009060351 was present in the total membrane protein and peptidoglycan fractions of M. fumariolicum SolV. The results suggest an involvement of lipoprotein WP_009060351 in the linkage between the outer membrane and the peptidoglycan.

Identifiants

pubmed: 37306788
doi: 10.1007/s00203-023-03603-y
pii: 10.1007/s00203-023-03603-y
pmc: PMC10260701
doi:

Substances chimiques

Peptidoglycan 0
Lipoproteins 0
Amino Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

261

Subventions

Organisme : Chinese Scholarship Council
ID : CQL: 201804910641
Organisme : European Research Council Advanced Grant
ID : VOLCANO 669371
Organisme : European Research Council Advanced Grant
ID : VOLCANO 669371
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ID : NWO VI.Vidi.192.001

Informations de copyright

© 2023. The Author(s).

Références

Armbruster KM, Meredith TC (2018) Enrichment of bacterial lipoproteins and preparation of N-terminal lipopeptides for structural determination by mass spectrometry. J Vis Exp 21:56842. https://doi.org/10.3791/56842
doi: 10.3791/56842
Asmar AT, Ferreira JL, Cohen EJ, Cho SH, Beeby M, Hughes KT, Collet J-F (2017) Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol 15:e2004303. https://doi.org/10.1371/journal.pbio.2004303
doi: 10.1371/journal.pbio.2004303 pubmed: 29257832 pmcid: 5736177
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaranet K (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773. https://doi.org/10.1128/JB.188.8.2761-2773.2006
doi: 10.1128/JB.188.8.2761-2773.2006 pubmed: 16585737 pmcid: 1446993
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ (2008) Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res 7:5082–5093. https://doi.org/10.1021/pr800162c
doi: 10.1021/pr800162c pubmed: 19367716
Braun V, Wu HC (1994) Chapter 14: Lipoproteins, structure, function, biosynthesis and model for protein export. New Compr Biochem 27:319–341. https://doi.org/10.1016/S0167-7306(08)60417-2
Cohen EJ, Ferreira JL, Ladinsky MS, Beeby M, Hughes KT (2017) Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science 356:197–200. https://doi.org/10.1126/science.aam6512
doi: 10.1126/science.aam6512 pubmed: 28408605 pmcid: 5963725
Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882. https://doi.org/10.1038/nature06411
doi: 10.1038/nature06411 pubmed: 18004300
Goolab S, Roth RL, van Heerden H, Crampton MC (2015) Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 6:1189. https://doi.org/10.3389/fmicb.2015.01189
doi: 10.3389/fmicb.2015.01189 pubmed: 26579096 pmcid: 4623201
Hagan CL, Silhavy TJ, Kahne D (2011) β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210. https://doi.org/10.1146/annurev-biochem-061408-144611
doi: 10.1146/annurev-biochem-061408-144611 pubmed: 21370981
Hayashi S, Wu HC (1990) Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471. https://doi.org/10.1007/BF00763177
doi: 10.1007/BF00763177 pubmed: 2202727
Hirashima A, Childs G, Inouye M (1973) Differential inhibitory effects of antibiotics on the biosynthesis of envelope proteins of Escherichia coli. J Mol Biol 79:373–389. https://doi.org/10.1016/0022-2836(73)90012-0
doi: 10.1016/0022-2836(73)90012-0 pubmed: 4586413
Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304. https://doi.org/10.1073/pnas.0704162105
doi: 10.1073/pnas.0704162105 pubmed: 18172218 pmcid: 2224206
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Khadem AF, Pol A, Jetten MSM, Op den Camp HJM (2010) Nitrogen fixation by the verrucomicrobial methanotroph ’Methylacidiphilum fumariolicum’ SolV. Microbiology (reading) 156:1052–1059. https://doi.org/10.1099/mic.0.036061-0
doi: 10.1099/mic.0.036061-0 pubmed: 20056702
Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MSM, Op den Camp HJM (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446. https://doi.org/10.1128/JB.00407-11
doi: 10.1128/JB.00407-11 pubmed: 21725016 pmcid: 3165502
Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 370:20150030. https://doi.org/10.1098/rstb.2015.0030
doi: 10.1098/rstb.2015.0030 pubmed: 26370942 pmcid: 4632606
Konovalova A, Mitchell AM, Silhavy TJ (2016) A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife 5:e15276. https://doi.org/10.7554/eLife.15276
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054 pubmed: 27004904 pmcid: 8210823
Leduc M, Joseleau-Petit D, Rothfield LI (1989) Interactions of membrane lipoproteins with the murein sacculus of Escherichia coli as shown by chemical crosslinking studies of intact cells. FEMS Microbiol Lett 51:11–14. https://doi.org/10.1016/0378-1097(89)90068-2
doi: 10.1016/0378-1097(89)90068-2 pubmed: 2676704
Lewenza S, Mhlanga MM, Pugsley AP (2008) Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 190:6119–6125. https://doi.org/10.1128/JB.00603-08
doi: 10.1128/JB.00603-08 pubmed: 18641140 pmcid: 2546801
Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635. https://doi.org/10.1016/j.cell.2014.02.033
doi: 10.1016/j.cell.2014.02.033 pubmed: 24766808 pmcid: 4006352
Mathelié-Guinlet M, Asmar AT, Collet JF, Dufrêne YF (2020) Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 11:1789. https://doi.org/10.1038/s41467-020-15489-1
doi: 10.1038/s41467-020-15489-1 pubmed: 32286264 pmcid: 7156740
McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405. https://doi.org/10.1093/bioinformatics/16.4.404
doi: 10.1093/bioinformatics/16.4.404 pubmed: 10869041
Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM (2017) Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and –insensitive hydrogenase. ISME J 11:945–958. https://doi.org/10.1038/ismej.2016.171
doi: 10.1038/ismej.2016.171 pubmed: 27935590
Nakamura K, Inouye M (1979) DNA sequence of the gene for the outer membrane lipoprotein of E. coli: an extremely AT-rich promoter. Cell 18:1109–1117. https://doi.org/10.1016/0092-8674(79)90224-1
doi: 10.1016/0092-8674(79)90224-1 pubmed: 391404
Nakamura K, Inouye M (1980) DNA sequence of the Serratia marcescens lipoprotein gene. Proc Natl Acad Sci USA 77:1369–1373. https://doi.org/10.1073/pnas.77.3.1369
doi: 10.1073/pnas.77.3.1369 pubmed: 6990409 pmcid: 348496
Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–4268. https://doi.org/10.1111/febs.12041
doi: 10.1111/febs.12041 pubmed: 23094979
Narita SI, Tokuda H (2016) Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1414–1423. https://doi.org/10.1016/j.bbalip.2016.11.009
doi: 10.1016/j.bbalip.2016.11.009 pubmed: 27871940
Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F (2020) Lipoproteins in Gram-positive bacteria: Abundance, function, fitness. Front Microbiol 11:582582. https://doi.org/10.3389/fmicb.2020.582582
doi: 10.3389/fmicb.2020.582582 pubmed: 33042100 pmcid: 7530257
Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771. https://doi.org/10.1074/jbc.M110.183780
doi: 10.1074/jbc.M110.183780 pubmed: 21138846
Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259. https://doi.org/10.1146/annurev-micro-090110-102859
doi: 10.1146/annurev-micro-090110-102859 pubmed: 21663440
Parra MC, Shaffer SA, Hajjar AM, Gallis BM, Hager A, Goodlett DR, Guina T, Miller S, Collins CM (2010) Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein. Microbiol Res 165:531–545. https://doi.org/10.1016/j.micres.2009.11.004
doi: 10.1016/j.micres.2009.11.004 pubmed: 20006480
Picone N, Blom P, Hogendoorn C, Frank J, van Alen TA, Pol A, Gagliano AL, Jetten MSM, D’Alessandro W, Quatrini P, Op den Camp HJM (2021) Metagenome Assembled Genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 12:666929. https://doi.org/10.3389/fmicb.2021.666929
doi: 10.3389/fmicb.2021.666929 pubmed: 34093485 pmcid: 8170126
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878. https://doi.org/10.1038/nature06222
doi: 10.1038/nature06222 pubmed: 18004305
Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108. https://doi.org/10.1128/mr.57.1.50-108.1993
doi: 10.1128/mr.57.1.50-108.1993 pubmed: 8096622 pmcid: 372901
Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schäffer C (2011) The S-layer glycome - adding to the sugar coat of bacteria. Int J Microbiol 2011:127870. https://doi.org/10.1155/2011/127870
doi: 10.1155/2011/127870 pubmed: 20871840
Robert X, Gouet PJ (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. https://doi.org/10.1093/nar/gku316
doi: 10.1093/nar/gku316 pubmed: 24753421 pmcid: 4086106
Schaub RE, Dillard JP (2017) Digestion of peptidoglycan and analysis of soluble fragments. Bio Protoc 7:e2438. https://doi.org/10.21769/BioProtoc.2438
Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, Daumann LJ, Op den Camnp HJM (2020) The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H
doi: 10.1038/s41396-020-0609-3 pubmed: 32042101 pmcid: 7174314
Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, Op en Camp HJM, (2021) Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuab007
doi: 10.1093/femsre/fuab007 pubmed: 33524112 pmcid: 8498564
Seydel A, Gounon P, Pugsley AP (1999) Testing the ‘+ 2 rule’for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810–821. https://doi.org/10.1046/j.1365-2958.1999.01647.x
doi: 10.1046/j.1365-2958.1999.01647.x pubmed: 10564520
Sharma S, Zhou R, Wan L, Feng S, Song K, Xu C, Li Y, Liao M (2021) Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins. Nat Commun 12:4687. https://doi.org/10.1038/s41467-021-24965-1
doi: 10.1038/s41467-021-24965-1 pubmed: 34344901 pmcid: 8333309
Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878. https://doi.org/10.1111/1462-2920.12454
doi: 10.1111/1462-2920.12454 pubmed: 24650084
Shruthi H, Babu MM, Sankaran K (2010) TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 70:359–370. https://doi.org/10.1007/s00239-010-9334-2
doi: 10.1007/s00239-010-9334-2 pubmed: 20333370
Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a000414
doi: 10.1101/cshperspect.a000414 pubmed: 20452953 pmcid: 2857177
Sklar JG, Wu T, Kahne D, Silhavy TJ (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484. https://doi.org/10.1101/gad.1581007
doi: 10.1101/gad.1581007 pubmed: 17908933 pmcid: 1993877
Sutcliffe IC, Harrington DJ, Hutchings MI (2012) A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 3:163–170. https://doi.org/10.1007/s13238-012-2023-8
doi: 10.1007/s13238-012-2023-8 pubmed: 22410786 pmcid: 4875425
Terada M, Kuroda T, Matsuyama SI, Tokuda H (2001) Lipoprotein sorting signals evaluated as the LolA-dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli. J Biol Chem 276:47690–47694. https://doi.org/10.1074/jbc.M109307200
doi: 10.1074/jbc.M109307200 pubmed: 11592971
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40:1023–1025. https://doi.org/10.1038/s41587-021-01156-3
doi: 10.1038/s41587-021-01156-3 pubmed: 34980915 pmcid: 9287161
van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, van Niftrik L (2014a) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791. https://doi.org/10.1128/AEM.01838-14
doi: 10.1128/AEM.01838-14 pubmed: 25172849 pmcid: 4249049
van Teeseling MC, de Almeida NM, Klingl A, Speth DR, Op den Camp HJM, Rachel R, Jetten MSM, van Niftrik L (2014) A new addition to the cell plan of anammox bacteria: “Candidatus Kuenenia stuttgartiensis” has a protein surface layer as the outermost layer of the cell. J Bacteriol 196:80–89. https://doi.org/10.1128/JB.00988-13
doi: 10.1128/JB.00988-13 pubmed: 24142254 pmcid: 3911120
Wilson MM, Bernstein HD (2016) Surface-exposed lipoproteins: An emerging secretion phenomenon in Gram-negative bacteria. Trends Microbiol 24:198–208. https://doi.org/10.1016/j.tim.2015.11.006
doi: 10.1016/j.tim.2015.11.006 pubmed: 26711681
Witwinowski J, Sartori-Rupp A, Taib N, Pende N, Nam Tham T, Poppleton G, Ghigo J-M, Beloin C, Gribaldo S (2022) An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat Microbiol 7:411–422. https://doi.org/10.1038/s41564-022-01066-3
doi: 10.1038/s41564-022-01066-3 pubmed: 35246664
Yamagata H, Nakamura K, Inouye M (1981) Comparison of the lipoprotein gene among the Enterobacteriaceae. DNA sequence of Erwinia amylovora lipoprotein gene. J Biol Chem 256:2194–2198. https://doi.org/10.1016/S0021-9258(19)69759-0
doi: 10.1016/S0021-9258(19)69759-0 pubmed: 6257705
Yamaguchi K, Yu F, Inouye M (1988) A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423–432. https://doi.org/10.1016/0092-8674(88)90162-6
doi: 10.1016/0092-8674(88)90162-6 pubmed: 3284654
Yasuda M, Iguchi-Yokoyama A, Matsuyama S, Tokuda H, Narita S (2009) Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE. Biosci Biotechnol Biochem 73:2310–2316. https://doi.org/10.1271/bbb.90451
doi: 10.1271/bbb.90451 pubmed: 19809197

Auteurs

Changqing Liu (C)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Federica Angius (F)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Arjan Pol (A)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Rob A Mesman (RA)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Wouter Versantvoort (W)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Huub J M Op den Camp (HJM)

Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands. h.opdencamp@science.ru.nl.

Articles similaires

Female Biofilms Animals Lactobacillus Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Biofilms Horses Animals Escherichia coli Mesenchymal Stem Cells

Classifications MeSH