HOGA1 variants in Chinese patients with primary hyperoxaluria type 3: genetic features and genotype-phenotype relationships.
Chinese
Genotype
Kidney stone
Phenotype
Primary hyperoxaluria type 3
Journal
World journal of urology
ISSN: 1433-8726
Titre abrégé: World J Urol
Pays: Germany
ID NLM: 8307716
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
13
01
2023
accepted:
29
05
2023
medline:
11
8
2023
pubmed:
15
6
2023
entrez:
15
6
2023
Statut:
ppublish
Résumé
The aim of our study is to describe the genetic features and correlation between the genotype and phenotype of Chinese patients with primary hyperoxaluria type 3 (PH3). The genetic and clinical data of PH3 patients in our cohort were collected and analyzed retrospectively. All published studies of Chinese PH3 populations between January 2010 and November 2022 were searched and enrolled based on inclusive standards. A total of 60 Chinese PH3 patients (21 cases from our cohort and 39 cases from previous studies) were included. The mean age of onset was 1.62 ± 1.35 (range 0.4-7) years. A total of 29 different variants in the HOGA1 gene were found. The mutations were most commonly clustered in exons 1, 6, and 7. Among the genotypes, exon 6 skipping (c.834G > A and c.834_834 + 1GG > TT mutations) was the most common, followed by c.769 T > G; the allele frequencies (AFs) were 48.76% and 12.40%, respectively. Patients homozygous for exon 6 skipping exhibited a median age of onset of 0.67 (0.58-1) years, which was significantly lower than that observed among heterozygotes and nonexon 6 skipping patients (p = 0.021). A total of 22.5% (9/40) of PH3 patients had a decreased estimated glomerular filtration rate, and one patient with homozygous exon 6 skipping developed end-stage renal disease. A hotspot mutation, potential hotspot mutation and genotype-phenotype correlation were found in Chinese PH3 patients. This study expands the mutational spectrum and contributes to the understanding of genotypic profiles of PH3, which may provide a potential diagnostic and therapeutic target.
Identifiants
pubmed: 37318624
doi: 10.1007/s00345-023-04461-5
pii: 10.1007/s00345-023-04461-5
doi:
Substances chimiques
4-hydroxy-2-oxoglutarate aldolase
EC 4.1.3.16
Oxo-Acid-Lyases
EC 4.1.3.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2141-2148Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Williams EL, Bockenhauer D, van’t Hoff WG et al (2012) The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transpl 27(8):3191–3195. https://doi.org/10.1093/ndt/gfs039
doi: 10.1093/ndt/gfs039
Belostotsky R, Pitt JJ, Frishberg Y (2012) Primary hyperoxaluria type III–a model for studying perturbations in glyoxylate metabolism. J Mol Med (Berlin) 90(12):1497–1504. https://doi.org/10.1007/s00109-012-0930-z
doi: 10.1007/s00109-012-0930-z
Monico CG, Rossetti S, Belostotsky R et al (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6(9):2289–2295. https://doi.org/10.2215/cjn.02760311
doi: 10.2215/cjn.02760311
pubmed: 21896830
pmcid: 3358997
Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8(8):467–475. https://doi.org/10.1038/nrneph.2012.113
doi: 10.1038/nrneph.2012.113
pubmed: 22688746
Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369(7):649–658. https://doi.org/10.1056/NEJMra1301564
doi: 10.1056/NEJMra1301564
pubmed: 23944302
Allard L, Cochat P, Leclerc AL et al (2015) Renal function can be impaired in children with primary hyperoxaluria type 3. Pediatr Nephrol (Berlin, Germany) 30(10):1807–1813. https://doi.org/10.1007/s00467-015-3090-x
doi: 10.1007/s00467-015-3090-x
Richard E, Blouin JM, Harambat J et al (2017) Late diagnosis of primary hyperoxaluria type III. Ann Clin Biochem 54(3):406–411. https://doi.org/10.1177/0004563216677101
doi: 10.1177/0004563216677101
pubmed: 27742850
Riedel TJ, Johnson LC, Knight J et al (2011) Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS ONE 6(10):e26021. https://doi.org/10.1371/journal.pone.0026021
doi: 10.1371/journal.pone.0026021
pubmed: 21998747
pmcid: 3188589
Hopp K, Cogal AG, Bergstralh EJ et al (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 26(10):2559–2570. https://doi.org/10.1681/asn.2014070698
doi: 10.1681/asn.2014070698
pubmed: 25644115
pmcid: 4587693
Abid A (2021) Possible ethnic associations in primary hyperoxaluria type-III-associated HOGA1 sequence variants. Mol Biol Rep 48(4):3841–3844. https://doi.org/10.1007/s11033-021-06380-3
doi: 10.1007/s11033-021-06380-3
pubmed: 33948853
Wang W, Liu Y, Kang L et al (2019) Mutation hot spot region in the HOGA1 gene associated with primary hyperoxaluria type 3 in the Chinese population. Kidney Blood Press Res 44(4):743–753. https://doi.org/10.1159/000501458
doi: 10.1159/000501458
pubmed: 31401635
Khamis MM, Adamko DJ, El-Aneed A (2017) Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev 36(2):115–134. https://doi.org/10.1002/mas.21455
doi: 10.1002/mas.21455
pubmed: 25881008
Wang X, Zhao X, Wang X et al (2015) Two novel HOGA1 splicing mutations identified in a Chinese patient with primary hyperoxaluria type 3. Am J Nephrol 42(1):78–84. https://doi.org/10.1159/000439232
doi: 10.1159/000439232
pubmed: 26340091
Zhou LQ, Wang Q, Zhang LM et al (2016) Primary hyperoxaluria type III in one patient and literature review. J Mod Urol. https://doi.org/10.3969/j.issn.1009-8291.2016.04.010
doi: 10.3969/j.issn.1009-8291.2016.04.010
He L, Xu G, Fang X et al (2019) Identification of 8 novel gene variants in primary hyperoxaluria in 21 Chinese children with urinary stones. World J Urol 37(8):1713–1721. https://doi.org/10.1007/s00345-018-2563-5
doi: 10.1007/s00345-018-2563-5
pubmed: 30488096
Fang X, He L, Xu G et al (2019) Nine novel HOGA1 gene mutations identified in primary hyperoxaluria type 3 and distinct clinical and biochemical characteristics in Chinese children. Pediatr Nephrol (Berlin, Germany) 34(10):1785–1790. https://doi.org/10.1007/s00467-019-04279-7
doi: 10.1007/s00467-019-04279-7
Zhang XYG (2020) Primary hyperoxaluria type 3: a case report. Chin J Nephrol. https://doi.org/10.3760/cma.j.cn441217-20200113-00088
doi: 10.3760/cma.j.cn441217-20200113-00088
Zhao Y, Li Y, Fang X et al (2022) Extended genetic analysis of exome sequencing for primary hyperoxaluria in pediatric urolithiasis patients with hyperoxaluria. Gene 815:1455. https://doi.org/10.1016/j.gene.2021.146155
doi: 10.1016/j.gene.2021.146155
Zhao Y, Fang X, He L et al (2022) A comparison of the clinical characteristics of pediatric urolithiasis patients with positive and negative molecular diagnoses. World J Urol 40(5):1211–1216. https://doi.org/10.1007/s00345-022-03934-3
doi: 10.1007/s00345-022-03934-3
pubmed: 35149915
Ji X, Liu J, Wang C et al (2022) Primary hyperoxaluria type 3 in 8 children: a case series report and literature review. Chin J Evid-Based Pediatr 17(3):003. https://doi.org/10.3969/j.issn.1673-5501.2022.03.011
doi: 10.3969/j.issn.1673-5501.2022.03.011
Abid A, Raza A, Aziz T et al (2022) HOGA1 gene pathogenic variants in primary hyperoxaluria type III: spectrum of pathogenic sequence variants, and phenotypic association. Hum Mutat. https://doi.org/10.1002/humu.24490
doi: 10.1002/humu.24490
pubmed: 36259736
Capalbo A, Valero RA, Jimenez-Almazan J et al (2019) Optimizing clinical exome design and parallel gene-testing for recessive genetic conditions in preconception carrier screening: translational research genomic data from 14,125 exomes. PLoS Genet 15(10):e1008409. https://doi.org/10.1371/journal.pgen.1008409
doi: 10.1371/journal.pgen.1008409
pubmed: 31589614
pmcid: 6797235
Kars ME, Başak AN, Onat OE et al (2021) The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2026076118
doi: 10.1073/pnas.2026076118
pubmed: 34426522
pmcid: 8433500
Riedel TJ, Knight J, Murray MS et al (2012) 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. Biochem Biophys Acta 1822(10):1544–1552. https://doi.org/10.1016/j.bbadis.2012.06.014
doi: 10.1016/j.bbadis.2012.06.014
pubmed: 22771891
Belostotsky R, Seboun E, Idelson GH et al (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87(3):392–399. https://doi.org/10.1016/j.ajhg.2010.07.023
doi: 10.1016/j.ajhg.2010.07.023
pubmed: 20797690
pmcid: 2933339
Williams EL, Bagg EA, Mueller M et al (2015) Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing. Mol Genet Genomic Med 3(1):69–78. https://doi.org/10.1002/mgg3.118
doi: 10.1002/mgg3.118
pubmed: 25629080
Pitt JJ, Willis F, Tzanakos N et al (2015) 4-hydroxyglutamate is a biomarker for primary hyperoxaluria type 3. JIMD Rep 15:1–6. https://doi.org/10.1007/8904_2013_291
doi: 10.1007/8904_2013_291
pubmed: 24563386
Beck BB, Baasner A, Buescher A et al (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 21(2):162–172. https://doi.org/10.1038/ejhg.2012.139
doi: 10.1038/ejhg.2012.139
pubmed: 22781098
M’Dimegh S, Aquaviva-Bourdain C, Omezzine A et al (2017) HOGA1 gene mutations of primary hyperoxaluria type 3 in Tunisian patients. J Clin Lab Anal. https://doi.org/10.1002/jcla.22053
doi: 10.1002/jcla.22053
pubmed: 27561601
Pelle A, Cuccurullo A, Mancini C et al (2017) Updated genetic testing of Italian patients referred with a clinical diagnosis of primary hyperoxaluria. J Nephrol 30(2):219–225. https://doi.org/10.1007/s40620-016-0287-4
doi: 10.1007/s40620-016-0287-4
pubmed: 26946417
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30
pubmed: 25741868
pmcid: 4544753
Maleki Dizaj S, Eftekhari A, Mammadova S et al (2021) Nanomaterials for chronic kidney disease detection. Appl Sci 11(20):9656. https://doi.org/10.3390/app11209656
doi: 10.3390/app11209656
Hoppe B, Koch A, Cochat P et al (2022) Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int 101(3):626–634. https://doi.org/10.1016/j.kint.2021.08.015
doi: 10.1016/j.kint.2021.08.015
pubmed: 34481803
Eftekhari A, Vahed SZ, Kavetskyy T et al (2020) Cell junction proteins: crossing the glomerular filtration barrier in diabetic nephropathy. Int J Biol Macromol 148:475–482. https://doi.org/10.1016/j.ijbiomac.2020.01.168
doi: 10.1016/j.ijbiomac.2020.01.168
pubmed: 31962072