CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato.


Journal

Transgenic research
ISSN: 1573-9368
Titre abrégé: Transgenic Res
Pays: Netherlands
ID NLM: 9209120

Informations de publication

Date de publication:
10 2023
Historique:
received: 27 12 2022
accepted: 01 06 2023
medline: 27 10 2023
pubmed: 18 6 2023
entrez: 18 6 2023
Statut: ppublish

Résumé

CRISPR/Cas9 technology has become the most efficient method for genome editing in many plant species, including important industrial crops such as potatoes. This study used three target regions (T1, T2, and T3) in gbss exon I, whose sequences were first inserted into the BbsI sites in the appropriate guide RNA (gRNA) vector (pEn-Chimera, pMR203, pMR204, and pMR205), and then localized between the AtU6 promoter and the gRNA scaffold sequence. Expression vectors were constructed by introducing gRNA genes into the pMR287 (pYUCas9Plus) plasmids using the MultiSite Gateway system by attR and attL sites. The three target regions of mutant potato lines were analyzed. The use of CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis allowed tri- or tetra-allelic mutant potato lines to be generated. Multiple nucleotide substitutions and indels within and around the three target sites caused a frameshift mutation that led to a premature stop codon, resulting in the production of gbss-knockout plants. Mutation frequencies and analysis of mutation patterns suggested that the stably transformed Cas9/multiple guide RNA expression constructs used in this study can induce targeted mutations efficiently in the potato genome. Full knockout of the gbss gene was analyzed by CAPS, Sanger sequencing and iodine staining. The present study demonstrated successful CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato gbss gene by Agrobacterium-mediated transformation, resulting in an amylose-free phenotype.

Identifiants

pubmed: 37330986
doi: 10.1007/s11248-023-00356-8
pii: 10.1007/s11248-023-00356-8
doi:

Substances chimiques

RNA, Guide, CRISPR-Cas Systems 0
Starch Synthase EC 2.4.1.21

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

383-397

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abeuova LS, Kali BR, Rakhimzhanova AO, Bekkuzhina SS, Manabayeva SA (2020) High frequency direct shoot regeneration from Kazakh commercial potato cultivars. PeerJ 8:e9447. https://doi.org/10.7717/peerj.9447
doi: 10.7717/peerj.9447 pubmed: 32742778 pmcid: 7365135
Aboul-Maaty NA-F, Oraby HA-S (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Natl Res Cent. https://doi.org/10.1186/s42269-019-0066-1
doi: 10.1186/s42269-019-0066-1
Andersson M, Trifonova A, Andersson AB, Johansson M, Bulow L, Hofvander P (2003) A novel selection system for potato transformation using a mutated AHAS gene. Plant Cell Rep 22(4):261–267. https://doi.org/10.1007/s00299-003-0684-8
doi: 10.1007/s00299-003-0684-8 pubmed: 14586551
Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P (2016) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128. https://doi.org/10.1007/s00299-016-2062-3
doi: 10.1007/s00299-016-2062-3 pubmed: 27699473 pmcid: 5206254
Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018a) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant. https://doi.org/10.1111/ppl.12731
doi: 10.1111/ppl.12731 pubmed: 29572864
Andersson M, Turesson H, Olsson N, Falt AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018b) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384. https://doi.org/10.1111/ppl.12731
doi: 10.1111/ppl.12731 pubmed: 29572864
Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844. https://doi.org/10.1038/s41587-020-0561-9
doi: 10.1038/s41587-020-0561-9 pubmed: 32572269
Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Secur 4(4):477–508. https://doi.org/10.1007/s12571-012-0220-1
doi: 10.1007/s12571-012-0220-1
Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676
doi: 10.1073/pnas.71.9.3672 pubmed: 4530328 pmcid: 433838
Delcour JA, Bruneel C, Derde LJ, Gomand SV, Pareyt B, Putseys JA, Wilderjans E, Lamberts L (2010) Fate of starch in food processing: from raw materials to final food products. Annu Rev Food Sci Technol 1:87–111. https://doi.org/10.1146/annurev.food.102308.124211
doi: 10.1146/annurev.food.102308.124211 pubmed: 22129331
Fossi M, Amundson K, Kuppu S, Britt A, Comai L (2019) Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol 180(1):78–86. https://doi.org/10.1104/pp.18.00906
doi: 10.1104/pp.18.00906 pubmed: 30792232 pmcid: 6501065
Hovenkamp-Hermelink J, Jacobsen E, Ponstein A, Visser R, Vos-Scheperkeuter G, Bijmolt E, De Vries J, Witholt B, Feenstra W (1987) Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theor Appl Genet 75:217–221
doi: 10.1007/BF00249167
https://new.stat.gov.kz (2022) Gross crop harvest in the Republic of Kazakhstan for 2022. https://newstatgovkz/ru/industries/business-statistics/stat-forrest-village-hunt-fish/publications/5099/?sphrase_id=39867
Hua D, Ma M, Ge G, Suleman M, Li H (2020) The role of cyanide-resistant respiration in Solanum tuberosum L. against high light stress. Plant Biol (stuttg) 22(3):425–432. https://doi.org/10.1111/plb.13098
doi: 10.1111/plb.13098 pubmed: 32052535
Johansen IE, Liu Y, Jorgensen B, Bennett EP, Andreasson E, Nielsen KL, Blennow A, Petersen BL (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9(1):17715. https://doi.org/10.1038/s41598-019-54126-w
doi: 10.1038/s41598-019-54126-w pubmed: 31776399 pmcid: 6881354
Kamiya Y, Abe F, Mikami M, Endo M, Kawaura K (2020) A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat. Plant Biotechnol (tokyo) 37(2):247–251. https://doi.org/10.5511/plantbiotechnology.20.0404b
doi: 10.5511/plantbiotechnology.20.0404b pubmed: 32821233
Khlestkin VK, Peltek SE, Kolchanov NA (2017) Target genes for development of potato (Solanum tuberosum L.) cultivars with desired starch properties (review). Sel’skokhozyaistvennaya Biologiya 52(1):25–36. https://doi.org/10.15389/agrobiology.2017.1.25eng
doi: 10.15389/agrobiology.2017.1.25eng
Kozlov SS, Blennow A, Krivandin AV, Yuryev VP (2007) Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int J Biol Macromol 40(5):449–460. https://doi.org/10.1016/j.ijbiomac.2006.11.001
doi: 10.1016/j.ijbiomac.2006.11.001 pubmed: 17188347
Kusano H, Ohnuma M, Mutsuro-Aoki H, Asahi T, Ichinosawa D, Onodera H, Asano K, Noda T, Horie T, Fukumoto K, Kihira M, Teramura H, Yazaki K, Umemoto N, Muranaka T, Shimada H (2018) Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep 8(1):13753. https://doi.org/10.1038/s41598-018-32049-2
doi: 10.1038/s41598-018-32049-2 pubmed: 30214055 pmcid: 6137036
Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Shimada H (2016) A simple Gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234. https://doi.org/10.1038/srep30234
doi: 10.1038/srep30234 pubmed: 27452606 pmcid: 4958979
Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532. https://doi.org/10.1016/j.molp.2017.01.003
doi: 10.1016/j.molp.2017.01.003 pubmed: 28089950
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP, Kalinina NO, Taliansky ME (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato solanum tuberosum using CRISPR-Cas9 editing. Dokl Biochem Biophys 484(1):88–91. https://doi.org/10.1134/S1607672919010241
doi: 10.1134/S1607672919010241 pubmed: 31012023
Murashige T, Skoog F (1962) A revised medium for rapid growth and biosynthesis with tobacco tissue culture. Plant Physiol 15:473–497
doi: 10.1111/j.1399-3054.1962.tb08052.x
Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123. https://doi.org/10.1093/bioinformatics/btu743
doi: 10.1093/bioinformatics/btu743 pubmed: 25414360
Shure M, Wessle S, Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell Res 35(1):225–233. https://doi.org/10.1016/0092-8674(83)90225-8
doi: 10.1016/0092-8674(83)90225-8
Toinga-Villafuerte S, Vales MI, Awika JM, Rathore KS (2022) CRISPR/Cas9-mediated mutagenesis of the granule-bound starch synthase gene in the potato variety yukon gold to obtain amylose-free starch in tubers. Int J Mol Sci. https://doi.org/10.3390/ijms23094640
doi: 10.3390/ijms23094640 pubmed: 35563030 pmcid: 9101600
Tussipkan D, Manabayeva SA (2021) Employing CRISPR/Cas technology for the improvement of potato and other tuber crops. Front Plant Sci 12:747476. https://doi.org/10.3389/fpls.2021.747476
doi: 10.3389/fpls.2021.747476 pubmed: 34764969 pmcid: 8576567
Veillet F, Chauvin L, Kermarrec MP, Sevestre F, Merrer M, Terret Z, Szydlowski N, Devaux P, Gallois JL, Chauvin JE (2019a) The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep 38(9):1065–1080. https://doi.org/10.1007/s00299-019-02426-w
doi: 10.1007/s00299-019-02426-w pubmed: 31101972
Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogue F, Mazier M (2019b) Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci. https://doi.org/10.3390/ijms20020402
doi: 10.3390/ijms20020402 pubmed: 30669298 pmcid: 6358797
Visser RG, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225(2):289–296
doi: 10.1007/BF00269861 pubmed: 2005870
Visser RGF, Suurs LCJM, Bruinenberg PM, Bleeker I, Jacobsen E (1997) Comparison between amylose-free and amylose containing potato starches. Starch Stärke 49(11):438–443. https://doi.org/10.1002/star.19970491103
doi: 10.1002/star.19970491103
Xu X, Visser RGF, Trindade LM (2014) Starch modification by biotechnology: state of art and perspectives. Starch Polym. https://doi.org/10.1016/B978-0-444-53730-0.00021-X
doi: 10.1016/B978-0-444-53730-0.00021-X

Auteurs

Laura Abeuova (L)

National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan.
L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan.

Balnur Kali (B)

National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan.

Dilnur Tussipkan (D)

National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan.

Ainash Akhmetollayeva (A)

National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan.

Yerlan Ramankulov (Y)

National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan.
National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan.

Shuga Manabayeva (S)

L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan. manabayeva@biocenter.kz.

Articles similaires

Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Gene Editing Climate Change Africa South of the Sahara Crops, Agricultural Agriculture
Animals Humans CRISPR-Cas Systems Mice Vascular Endothelial Growth Factor A
Animals CRISPR-Cas Systems Gene Editing Animals, Genetically Modified Livestock

Classifications MeSH