Polymer Nanoantidotes.

biomimetic clearance chemical bonding clinical practice physical interaction polymer nanoantidote

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
26 Jul 2023
Historique:
received: 06 04 2023
medline: 27 7 2023
pubmed: 19 6 2023
entrez: 19 6 2023
Statut: ppublish

Résumé

Intoxication is one of the most common causes of accidental death globally. Although some antidotes capable of neutralizing the toxicity of certain xenobiotics have become well established, the current reality is that clinicians primarily rely on nonspecific extracorporeal techniques to remove toxins. Nano-intervention strategies in which nanoantidotes neutralize toxicity in situ via physical interaction, chemical bonding, or biomimetic clearance have begun to show clinical potential. However, most nanoantidotes remain in the proof-of-concept stage, and the difficulty of constructing clinical relevance models and the unclear pharmacokinetics of nanoantidotes hinder their translation to clinic. This Concept reviews the detoxification mechanisms of polymer nanoantidotes and predicts the opportunities and challenges associated with their clinical application.

Identifiants

pubmed: 37335074
doi: 10.1002/chem.202301107
doi:

Substances chimiques

Polymers 0
Antidotes 0
Toxins, Biological 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202301107

Subventions

Organisme : National Natural Science Foundation of China
ID : Nos. 52273158
Organisme : National Natural Science Foundation of China
ID : Nos.52022095
Organisme : Science and Technology Development Program of Jilin Province
ID : No. 20210509005RQ
Organisme : Youth Innovation Promotion Association of Chinese Academy of Sciences
ID : No. 2019230

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

J. C. Leroux, Nat. Nanotechnol. 2007, 2, 679-684.
J. L. Zimmerman, Crit. Care Med. 2003, 31, 2794-2801.
V. Forster, J. C. Leroux, Sci. Transl. Med. 2015, 7, 290ps214.
J. Yang, T. Su, H. Zou, G. Yang, J. Ding, X. Chen, Angew. Chem. 2022, 61, e202211136.
Y. Liu, D. Li, J. Ding, X. Chen, Chin. Chem. Lett. 2020, 31, 3001-3014.
V. Forster, P. Luciani, J. C. Leroux, Biomaterials 2012, 33, 3578-3585.
Y. Hoshino, H. Koide, K. Furuya, W. W. Haberaecker, S. H. Lee, T. Kodama, H. Kanazawa, N. Oku, K. J. Shea, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 33-38.
D. Cao, K. Heard, M. Foran, A. Koyfman, J. Emerg. Med. 2015, 48, 387-397.
N. Bertrand, C. Bouvet, P. Moreau, J. C. Leroux, ACS Nano 2010, 4, 7552-7558.
V. Forster, R. D. Signorell, M. Roveri, J. C. Leroux, Sci. Transl. Med. 2014, 6, 258ra141.
K. Achazi, R. Haag, M. Ballauff, J. Dernedde, J. N. Kizhakkedathu, D. Maysinger, G. Multhaup, Angew. Chem. 2021, 60, 3882-3904.
T. D. Thanh Nguyen, A. Pitchaimani, M. B. Koirala, F. Muhammad, S. Aryal, RSC Adv. 2016, 6, 33003-33008.
M. Tian, D. Fan, Z. Liu, X. Mu, Q. Tao, C. Yu, S. Zhang, Adv. Mater. 2022, 34, 2205299.
C. Cao, L. Zhang, B. Kent, S. Wong, C. J. Garvey, M. H. Stenzel, Angew. Chem. 2021, 60, 10342-10349.
M. T. Kalathottukaren, S. Abbina, K. Yu, R. A. Shenoi, A. L. Creagh, C. Haynes, J. N. Kizhakkedathu, Biomacromolecules 2017, 18, 3343-3358.
B. Kalaska, J. Miklosz, K. Kamiński, J. Swieton, A. Jakimczuk, S. I. Yusa, D. Pawlak, M. Nowakowska, K. Szczubiałka, A. Mogielnicki, J. Pharmacol. Exp. Ther. 2020, 373, 51-61.
H. Koide, H. Tsuchida, M. Nakamoto, A. Okishima, S. Ariizumi, C. Kiyokawa, T. Asai, Y. Hoshino, N. Oku, J. Control. Release 2017, 268, 335-342.
L. Taiariol, C. Chaix, C. Farre, E. Moreau, Chem. Rev. 2022, 122, 340-384.
R. G. Pearson, Inorg. Chim. Acta 1995, 240, 93-98.
M. Hruby, I. I. S. Martínez, H. Stephan, P. Pouckova, J. Benes, P. Stepanek, Polymer 2021, 13, 3969.
S. Abbina, U. Abbasi, A. Gill, K. Wong, M. T. Kalathottukaren, J. N. Kizhakkedathu, ACS Cent. Sci. 2019, 5, 917-926.
X. He, L. Yang, G. Liu, Y. Wei, Y. Zeng, L. Tao, Chem. Mater. 2022, 34, 9558-9568.
H. Xiao, L. Yan, E. M. Dempsey, W. Song, R. Qi, W. Li, Y. Huang, X. Jing, D. Zhou, J. Ding, X. Chen, Prog. Polym. Sci. 2018, 87, 70-106.
D. R. Freyer, J. Clin. Oncol. 2014, 32, 10017.
Y. Wang, J. Wang, D. Zhu, Y. Wang, G. Qing, Y. Zhang, X. Liu, X. J. Liang, Acta Pharm. Sin. B 2021, 11, 886-902.
W. J. Smith, G. Wang, H. Gaikwad, V. P. Vu, E. Groman, D. W. A. Bourne, D. Simberg, ACS Nano 2018, 12, 12523-12532.
M. Tian, R. Xing, J. Guan, B. Yang, X. Zhao, J. Yang, C. Zhan, S. Zhang, Nano Lett. 2021, 21, 5158-5166.
Q. Weng, H. Sun, C. Fang, F. Xia, H. Liao, J. Lee, J. Wang, A. Xie, J. Ren, X. Guo, F. Li, B. Yang, D. Ling, Nat. Commun. 2021, 12, 1436.
C.-M. J. Hu, R. H. Fang, J. Copp, B. T. Luk, L. Zhang, Nat. Nanotechnol. 2013, 8, 336-340.
Z. Pang, C. M. J. Hu, R. H. Fang, B. T. Luk, W. Gao, F. Wang, E. Chuluun, P. Angsantikul, S. Thamphiwatana, W. Lu, X. Jiang, L. Zhang, ACS Nano 2015, 9, 6450-6458.
M. A. Mintzer, M. W. Grinstaff, Chem. Soc. Rev. 2011, 40, 173-190.
 
Y. Liu, J. Li, Y. Lu, Adv. Drug Delivery Rev. 2015, 90, 24-39;
W. Wei, J. Du, J. Li, M. Yan, Q. Zhu, X. Jin, X. Zhu, Z. Hu, Y. Tang, Y. Lu, Adv. Mater. 2013, 25, 2212-2218.
M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, S. Priceman, L. Wu, Z. H. Zhou, Z. Liu, T. Segura, Y. Tang, Y. Lu, Nat. Nanotechnol. 2010, 5, 48-53.
Y. Liu, J. Du, M. Yan, M. Y. Lau, J. Hu, H. Han, O. O. Yang, S. Liang, W. Wei, H. Wang, J. Li, X. Zhu, L. Shi, W. Chen, C. Ji, Y. Lu, Nat. Nanotechnol. 2013, 8, 187-192.
Y. Zhao, Z. Zhang, Z. Pan, Y. Liu, Exploration 2021, 1, 20210089.
H. Zhang, S. Dong, Z. Li, X. Feng, W. Xu, C. M. S. Tulinao, Y. Jiang, J. Ding, Asian J. Pharm. Sci. 2020, 15, 397-415.

Auteurs

Jiazhen Yang (J)

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China.

Hongjie Li (H)

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China.

Haoyang Zou (H)

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.

Jianxun Ding (J)

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH