Performance of a new family of modular, bed-supported, chromatography devices.
chromatography
continuous processing
monoclonal antibodies
protein
protein A
supported bed
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
25
05
2023
received:
31
01
2023
accepted:
29
05
2023
medline:
15
9
2023
pubmed:
20
6
2023
entrez:
20
6
2023
Statut:
ppublish
Résumé
Prepacked chromatography columns and cassette filtration units offer many advantages in bioprocessing. These include reduced labor costs and processing times, ease of storage, and enhanced process flexibility. Rectangular formats are particularly attractive as they can be easily stacked and multiplexed together for continuous processing. Cylindrical chromatography beds have dominated bioprocessing even though their bed support and pressure-flow performance vary with bed dimensions. This work presents the performance of novel, rhombohedral chromatography devices with internally supported beds. They are compatible with existing chromatography workstations and can be packed with any standard commercial resin. The devices offer pressure-flow characteristics independent of container-volume, simple multiplexing, and separation performance comparable to cylindrical columns. Their bi-planar, internal bed support allows mechanically less-rigid resins to be used at up to four times higher maximal linear velocities, and productivities approaching 200 g/L/h for affinity resins, compared to the 20 g/L/h typical of many column-based devices. Three 5 L devices should allow processing of up to 3 kg of monoclonal antibody per hour.
Substances chimiques
Antibodies, Monoclonal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2907-2916Informations de copyright
© 2023 JSR Life Sciences. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
Références
Bolton, G. R., & Mehta, K. K. (2016). The role of more than 40 years of improvement in Protein A chromatography in the growth of the therapeutic antibody industry. Biotechnology Progress, 32, 1193-1202. https://doi.org/10.1002/btpr.2324
Cai, Y., & Yue, P. (2011). Separation of exenatide analogue mono-PEGylated with 40 kDA polyethylene glycol by cation exchange chromatography. Journal of Chromatography A, 1218, 6953-6960. https://doi.org/10.1016/j.chroma.2011.07.107
ChromNeX™ Chromatography Platform, 2022, JSR Life Sciences, Internet Documents. https://www.jsrlifesciences.com/bioprocess/chromnex
Cytiva. (2011). Lifetime performance study of MabSelect SuRe™ LX during repeated cleaning-in-place. Application Note 28-9872-96 AA, © 2011 General Electric Company. https://cytiva-delivery.sitecorecontenthub.cloud/api/public/content/digi-15713-pdf
Cytiva. (2018). Lifetime performance study of MabSelect™ PrismA during repeated cleaning-in-place cycles. Application Note KA1061120418AN, © 2018 General Electric Company. https://cytiva-delivery.sitecorecontenthub.cloud/api/public/content/digi-26523-pdf
Cytiva. (2022). Benchmarking study: Alkaline stability of modern protein A chromatography resins, TR2961327, CY19685. https://www.cytivalifesciences.com/en/us/solutions/bioprocessing/knowledge-center/alkaline-stability-of-protein-a-affinity-resins
Danish, E. P. A. (2017). Survey of chemical substances in consumer products No. 161. Risk assessment of 3D printers and 3D printed products. https://www2.mst.dk/Udgiv/publications/2017/05/978-87-93614-00-0.pdf
de los Reyes, G. (2013). Stackable Planar Adsorptive Devices, US Patent 8,506,802 B1, SPF Innovations LLC (Allston, MA, USA).
de los Reyes, G. (2015). Stackable Planar Adsorptive Devices, Allston, MA, USA).
de los Reyes, G. (2017). Stackable Planar Adsorptive Devices, US Patent 9,599,594 B2, SPF Technologies LLC (Allston, MA, USA).
Hansson, E. (2013). Physical and functional properties of chromatography media - a down-scale study, Examensarbete, Uppsala University. https://www.ibg.uu.se/digitalAssets/164/c_164511-l_3-k_rapport-diva-emma-hansson.pdf
Harinarayan, C., Mueller, J., Ljunglöf, A., Fahrner, R., Van Alstine, J., & van Reis, R. (2006). An exclusion mechanism in ion exchange chromatography. Biotechnology and Bioengineering, 95, 775-787. https://doi.org/10.1002/bit.21080
He, W., & Bruley, D. F. (2003). Soft gel chromatography column analysis and design for the production of high molecular weight blood factors: model molecule Protein C. Advances in Experimental Medicine and Biology, 510, 121-125. https://doi.org/10.1007/978-1-4615-0205-0_20
Hedberg, S. H., Heng, J. Y., Williams, D. R., & Liddell, J. M. (2015). Self-Interaction chromatography of mAbs: Accurate measurement of dead volumes. Pharmaceutical Research, 32, 3975-3985. https://doi.org/10.1007/s11095-015-1758-3
Hilbold, N.-J., Le Saoût, X., Valery, E., Muhr, L., Souquet, J., Lamproye, A., & Broly, H. (2017). Evaluation of several Protein A resins for application to multicolumn chromatography for the rapid purification of fed-batch bioreactors. Biotechnology Progress, 33, 941-953. https://doi.org/10.1002/btpr.2465
Huang, P. Y., Lin, Y., Duffy, B., & Varma, A. (2019). An integrated bioprocess for antibodies from harvest to purified bulk in six hours. BioProcess International, 17(6), 2-6 https://bioprocessintl.com/2019/an-integrated-bioprocess-for-antibodies-from-harvest-to-purified-bulk-in-six-hours/
JSR Life Sciences. (2022). Lifetime study for JSR Amsphere A3 protein A resin. JSR technical note AN5. JSR Corporation. https://www.jsrlifesciences.com/amsphere-an5-lifetime-study
Lan, T., Gerontas, S., Smith, G. R., Langdon, J., Ward, J. M., & Titchener-Hooker, N. J. (2012). Investigating the use of column inserts to achieve better chromatographic bed support. Biotechnology Progress, 28, 1285-1291. https://doi.org/10.1002/btpr.1597
MacroCap SP and MacroCap Q Data File, CY13472-23Jul20-DF, 2020, Cytiva https://cdn.cytivalifesciences.com/api/public/content/digi-14009-pdf
McCann, K. B., Van Alstine, J., Martinez, J., Shanagar, J., & Bertolini, J. (2020). Polyacrylic acid based plasma fractionation for the production of albumin and IgG: Compatibility with existing commercial downstream processes. Biotechnology and Bioengineering, 117, 1072-1081. https://doi.org/10.1002/bit.27265
Moreira, A. S., Cavaco, D. G., Faria, T. Q., Alves, P. M., Carrondo, M. J. T., & Peixoto, C. (2021). Advances in lentivirus purification. Biotechnology Journal, 16, 2000019. https://doi.org/10.1002/biot.202000019
Nweke, M. C., McCartney, R. G., & Bracewell, D. G. (2017). Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture. Journal of Chromatography A, 1530, 129-137. https://doi.org/10.1016/j.chroma.2017.11.038
Pabst, T. M., Thai, J., & Hunter, A. K. (2018). Evaluation of recent Protein A stationary phase innovations forcapture of biotherapeutics. Journal of Chromatography A, 1554, 45-60. https://doi.org/10.1016/j.chroma.2018.03.060
Phenyl Sepharose High Performance Instructions 71-7129-00 AF, 2013, GE Healthcare Bioscience, now Cytiva. http://www.prep-hplc.com/Uploads/ueditor/file/20190731/5d4108d74e072.pdf
Phenyl Sepharose HP Data File, CY14624-08Sep20-DF, 2020, Cytiva. https://www.cytivalifesciences.com/en/us/shop/chromatography/resins/hydrophobic-interaction/phenyl-sepharose-high-performance-p-06293#related-documents
Shukla, A. A., Wolfe, L. S., Mostafa, S. S., & Norman, C. (2017). Evolving trends in mAb production processes. Bioengineering & Translational Medicine, 2, 58-69. https://doi.org/10.1002/btm2.10061
Stickel, J. J., & Fotopoulos, A. (2001). Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale. Biotechnology Progress, 17, 744-751. https://doi.org/10.1021/bp010060
Van Alstine, J., Bergstrom, J., Lindstrom, D., & Stadler, J. (2012). Plasmid purification, Patent US8093373B2.