Structural insights into epitope-paratope interactions of a monoclonal antibody targeting CEACAM5-expressing tumors.
Humans
Epitopes
/ immunology
Antibodies, Monoclonal
/ chemistry
Immunoglobulin Fab Fragments
/ chemistry
Cryoelectron Microscopy
Neoplasms
/ immunology
Carcinoembryonic Antigen
/ immunology
Protein Binding
Cell Adhesion Molecules
/ metabolism
Models, Molecular
Protein Domains
Surface Plasmon Resonance
Immunoconjugates
/ chemistry
GPI-Linked Proteins
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
04
08
2023
accepted:
18
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are overexpressed in some tumor types. The antibody-drug conjugate tusamitamab ravtansine specifically recognizes the A3-B3 domains of human CEACAM5 (hCEACAM5). To understand this specificity, here we map the epitope-paratope interface between the A3-B3 domains of hCEACAM5 (hCEACAM5
Identifiants
pubmed: 39477960
doi: 10.1038/s41467-024-53746-9
pii: 10.1038/s41467-024-53746-9
doi:
Substances chimiques
CEACAM5 protein, human
0
Epitopes
0
Antibodies, Monoclonal
0
Immunoglobulin Fab Fragments
0
Carcinoembryonic Antigen
0
Cell Adhesion Molecules
0
Immunoconjugates
0
GPI-Linked Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9377Informations de copyright
© 2024. The Author(s).
Références
Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).
doi: 10.1006/scbi.1998.0119
pubmed: 10202129
Beauchemin, N. & Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32, 643–671 (2013).
doi: 10.1007/s10555-013-9444-6
pubmed: 23903773
Decary, S. et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin. Cancer Res. 26, 6589–6599 (2020).
doi: 10.1158/1078-0432.CCR-19-4051
pubmed: 33046521
Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).
pubmed: 7932691
Beauchemin, N., Benchimol, S., Cournoyer, D., Fuks, A. & Stanners, C. P. Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol. Cell Biol. 7, 3221–3230 (1987).
pubmed: 3670312
pmcid: 367958
Roda, G. et al. Characterizing CEACAM5 interaction with CD8alpha and CD1d in intestinal homeostasis. Mucosal Immunol. 7, 615–624 (2014).
doi: 10.1038/mi.2013.80
pubmed: 24104458
Zhao, Q. et al. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin. Proteomics 15, 9 (2018).
doi: 10.1186/s12014-018-9182-4
pubmed: 29507546
pmcid: 5834848
Chiang, W.-F. et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 37, 116–127 (2018).
doi: 10.1038/onc.2017.303
pubmed: 28892050
Pont, L. et al. Site-specific N-linked glycosylation analysis of human carcinoembryonic antigen by sheathless capillary electrophoresis-tandem mass spectrometry. J. Proteome Res. 20, 1666–1675 (2021).
doi: 10.1021/acs.jproteome.0c00875
pubmed: 33560857
pmcid: 8023805
Tate, J. & Ward, G. Interferences in immunoassay. Clin. Biochem. Rev 25, 105–120 (2004).
pubmed: 18458713
Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target Ther. 7, 39 (2022).
doi: 10.1038/s41392-021-00868-x
pubmed: 35132063
Gazzah, A. et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody-drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study. Ann. Oncol. 33, 416–425 (2022).
doi: 10.1016/j.annonc.2021.12.012
pubmed: 35026412
Gazzah, A. et al. Efficacy and safety of the antibody-drug conjugate (ADC) SAR408701 in patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J. Clin. Oncol. 38, 9505 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.9505
Ricordel, C. et al. Safety and efficacy of tusamitamab ravtansine (SAR408701) in long-term treated patients with nonsquamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). American Society for Clinical Oncology Annual Meeting; Chicago, IL; June 3-7, 2022.
Boehm, M. K. et al. Extended glycoprotein structure of the seven domains in human carcinoembryonic antigen by X-ray and neutron solution scattering and an automated curve fitting procedure: implications for cellular adhesion. J. Mol. Biol. 259, 718–736 (1996).
doi: 10.1006/jmbi.1996.0353
pubmed: 8683578
Bates, P. A., Luo, J. & Sternberg, M. J. A predicted three-dimensional structure for the carcinoembryonic antigen (CEA). FEBS Lett. 301, 207–214 (1992).
doi: 10.1016/0014-5793(92)81249-L
pubmed: 1568482
Bonsor, D. A., Günther, S., Beadenkopf, R., Beckett, D. & Sundberg, E. J. Diverse oligomeric states of CEACAM IgV domains. Proc. Natl. Acad. Sci. USA. 112, 13561–13566 (2015).
doi: 10.1073/pnas.1509511112
pubmed: 26483485
EMBL-EBI. InterPro: IPR008424–immunoglobulin C2-set. Available at https://www.ebi.ac.uk/interpro/entry/InterPro/IPR008424/ .
Nguyen, M. N., Pradhan, M. R., Verma, C. & Zhong, P. The interfacial character of antibody paratopes: analysis of antibody-antigen structures. Bioinformatics 33, 2971–2976 (2017).
doi: 10.1093/bioinformatics/btx389
pubmed: 28633399
Peng, H.-P., Lee, K. H., Jian, J.-W. & Yang, A.-S. Origins of specificity and affinity in antibody-protein interactions. Proc. Natl. Acad. Sci. USA. 111, E2656–E2665 (2014).
doi: 10.1073/pnas.1401131111
pubmed: 24938786
pmcid: 4084487
D’Angelo, S. et al. Many routes to an antibody heavy-chain CDR3: necessary, yet insufficient, for specific binding. Front. Immunol. 9, 395 (2018).
doi: 10.3389/fimmu.2018.00395
pubmed: 29568296
pmcid: 5852061
Kuroda, D. & Gray, J. J. Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 32, 2451–2456 (2016).
doi: 10.1093/bioinformatics/btw197
pubmed: 27153634
pmcid: 4978935
Lee, H. S., Qi, Y. & Im, W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep. 5, 8926 (2015).
doi: 10.1038/srep08926
pubmed: 25748215
pmcid: 4352867
Zhou, Q. & Qiu, H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J. Pharm. Sci. 108, 1366–1377 (2019).
doi: 10.1016/j.xphs.2018.11.029
pubmed: 30471292
Sinha, N., Mohan, S., Lipschultz, C. A. & Smith-Gill, S. J. Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity. Biophys. J. 83, 2946–2968 (2002).
doi: 10.1016/S0006-3495(02)75302-2
pubmed: 12496069
pmcid: 1302377
Tsumoto, K. et al. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J. Biol. Chem. 271, 32612–32616 (1996).
doi: 10.1074/jbc.271.51.32612
pubmed: 8955089
Xu, D., Tsai, C. J. & Nussinov, R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10, 999–1012 (1997).
doi: 10.1093/protein/10.9.999
pubmed: 9464564
Yugandhar, K. & Gromiha, M. M. Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics 30, 3583–3589 (2014).
doi: 10.1093/bioinformatics/btu580
pubmed: 25172924
Baek, D.-S. et al. A highly-specific fully-human antibody and CAR-T cells targeting CD66e/CEACAM5 are cytotoxic for CD66e-expressing cancer cells in vitro and in vivo. Cancer Lett. 525, 97–107 (2022).
doi: 10.1016/j.canlet.2021.10.041
pubmed: 34740610
Elbein, A. D., Tropea, J. E., Mitchell, M. & Kaushal, G. P. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J. Biol. Chem. 265, 15599–15605 (1990).
doi: 10.1016/S0021-9258(18)55439-9
pubmed: 2144287
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
pmcid: 8371605
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
pubmed: 15572765
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
pubmed: 20124702
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
doi: 10.1038/msb.2011.75
pubmed: 21988835
pmcid: 3261699
Nguyen, H. H., Park, J., Kang, S. & Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel) 15, 10481–10510 (2015).
doi: 10.3390/s150510481
pubmed: 25951336
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).
doi: 10.1093/nar/gkv314
pubmed: 25908787
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
doi: 10.1016/j.jmb.2007.05.022
pubmed: 17681537
Pettersen, E. F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
pubmed: 15264254
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Giladi, M. et al. Dynamic distinctions in the Na(+)/Ca(2+) exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 292, 12311–12323 (2017).
doi: 10.1074/jbc.M117.787168
pubmed: 28572509
pmcid: 5519378
Giladi, M. et al. Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 6, 20753 (2016).
doi: 10.1038/srep20753
pubmed: 26876271
pmcid: 4753433