Structural insights into epitope-paratope interactions of a monoclonal antibody targeting CEACAM5-expressing tumors.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 04 08 2023
accepted: 18 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are overexpressed in some tumor types. The antibody-drug conjugate tusamitamab ravtansine specifically recognizes the A3-B3 domains of human CEACAM5 (hCEACAM5). To understand this specificity, here we map the epitope-paratope interface between the A3-B3 domains of hCEACAM5 (hCEACAM5

Identifiants

pubmed: 39477960
doi: 10.1038/s41467-024-53746-9
pii: 10.1038/s41467-024-53746-9
doi:

Substances chimiques

CEACAM5 protein, human 0
Epitopes 0
Antibodies, Monoclonal 0
Immunoglobulin Fab Fragments 0
Carcinoembryonic Antigen 0
Cell Adhesion Molecules 0
Immunoconjugates 0
GPI-Linked Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9377

Informations de copyright

© 2024. The Author(s).

Références

Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).
doi: 10.1006/scbi.1998.0119 pubmed: 10202129
Beauchemin, N. & Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32, 643–671 (2013).
doi: 10.1007/s10555-013-9444-6 pubmed: 23903773
Decary, S. et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin. Cancer Res. 26, 6589–6599 (2020).
doi: 10.1158/1078-0432.CCR-19-4051 pubmed: 33046521
Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).
pubmed: 7932691
Beauchemin, N., Benchimol, S., Cournoyer, D., Fuks, A. & Stanners, C. P. Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol. Cell Biol. 7, 3221–3230 (1987).
pubmed: 3670312 pmcid: 367958
Roda, G. et al. Characterizing CEACAM5 interaction with CD8alpha and CD1d in intestinal homeostasis. Mucosal Immunol. 7, 615–624 (2014).
doi: 10.1038/mi.2013.80 pubmed: 24104458
Zhao, Q. et al. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin. Proteomics 15, 9 (2018).
doi: 10.1186/s12014-018-9182-4 pubmed: 29507546 pmcid: 5834848
Chiang, W.-F. et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 37, 116–127 (2018).
doi: 10.1038/onc.2017.303 pubmed: 28892050
Pont, L. et al. Site-specific N-linked glycosylation analysis of human carcinoembryonic antigen by sheathless capillary electrophoresis-tandem mass spectrometry. J. Proteome Res. 20, 1666–1675 (2021).
doi: 10.1021/acs.jproteome.0c00875 pubmed: 33560857 pmcid: 8023805
Tate, J. & Ward, G. Interferences in immunoassay. Clin. Biochem. Rev 25, 105–120 (2004).
pubmed: 18458713
Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target Ther. 7, 39 (2022).
doi: 10.1038/s41392-021-00868-x pubmed: 35132063
Gazzah, A. et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody-drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study. Ann. Oncol. 33, 416–425 (2022).
doi: 10.1016/j.annonc.2021.12.012 pubmed: 35026412
Gazzah, A. et al. Efficacy and safety of the antibody-drug conjugate (ADC) SAR408701 in patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J. Clin. Oncol. 38, 9505 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.9505
Ricordel, C. et al. Safety and efficacy of tusamitamab ravtansine (SAR408701) in long-term treated patients with nonsquamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). American Society for Clinical Oncology Annual Meeting; Chicago, IL; June 3-7, 2022.
Boehm, M. K. et al. Extended glycoprotein structure of the seven domains in human carcinoembryonic antigen by X-ray and neutron solution scattering and an automated curve fitting procedure: implications for cellular adhesion. J. Mol. Biol. 259, 718–736 (1996).
doi: 10.1006/jmbi.1996.0353 pubmed: 8683578
Bates, P. A., Luo, J. & Sternberg, M. J. A predicted three-dimensional structure for the carcinoembryonic antigen (CEA). FEBS Lett. 301, 207–214 (1992).
doi: 10.1016/0014-5793(92)81249-L pubmed: 1568482
Bonsor, D. A., Günther, S., Beadenkopf, R., Beckett, D. & Sundberg, E. J. Diverse oligomeric states of CEACAM IgV domains. Proc. Natl. Acad. Sci. USA. 112, 13561–13566 (2015).
doi: 10.1073/pnas.1509511112 pubmed: 26483485
EMBL-EBI. InterPro: IPR008424–immunoglobulin C2-set. Available at https://www.ebi.ac.uk/interpro/entry/InterPro/IPR008424/ .
Nguyen, M. N., Pradhan, M. R., Verma, C. & Zhong, P. The interfacial character of antibody paratopes: analysis of antibody-antigen structures. Bioinformatics 33, 2971–2976 (2017).
doi: 10.1093/bioinformatics/btx389 pubmed: 28633399
Peng, H.-P., Lee, K. H., Jian, J.-W. & Yang, A.-S. Origins of specificity and affinity in antibody-protein interactions. Proc. Natl. Acad. Sci. USA. 111, E2656–E2665 (2014).
doi: 10.1073/pnas.1401131111 pubmed: 24938786 pmcid: 4084487
D’Angelo, S. et al. Many routes to an antibody heavy-chain CDR3: necessary, yet insufficient, for specific binding. Front. Immunol. 9, 395 (2018).
doi: 10.3389/fimmu.2018.00395 pubmed: 29568296 pmcid: 5852061
Kuroda, D. & Gray, J. J. Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 32, 2451–2456 (2016).
doi: 10.1093/bioinformatics/btw197 pubmed: 27153634 pmcid: 4978935
Lee, H. S., Qi, Y. & Im, W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep. 5, 8926 (2015).
doi: 10.1038/srep08926 pubmed: 25748215 pmcid: 4352867
Zhou, Q. & Qiu, H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J. Pharm. Sci. 108, 1366–1377 (2019).
doi: 10.1016/j.xphs.2018.11.029 pubmed: 30471292
Sinha, N., Mohan, S., Lipschultz, C. A. & Smith-Gill, S. J. Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity. Biophys. J. 83, 2946–2968 (2002).
doi: 10.1016/S0006-3495(02)75302-2 pubmed: 12496069 pmcid: 1302377
Tsumoto, K. et al. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J. Biol. Chem. 271, 32612–32616 (1996).
doi: 10.1074/jbc.271.51.32612 pubmed: 8955089
Xu, D., Tsai, C. J. & Nussinov, R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10, 999–1012 (1997).
doi: 10.1093/protein/10.9.999 pubmed: 9464564
Yugandhar, K. & Gromiha, M. M. Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics 30, 3583–3589 (2014).
doi: 10.1093/bioinformatics/btu580 pubmed: 25172924
Baek, D.-S. et al. A highly-specific fully-human antibody and CAR-T cells targeting CD66e/CEACAM5 are cytotoxic for CD66e-expressing cancer cells in vitro and in vivo. Cancer Lett. 525, 97–107 (2022).
doi: 10.1016/j.canlet.2021.10.041 pubmed: 34740610
Elbein, A. D., Tropea, J. E., Mitchell, M. & Kaushal, G. P. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J. Biol. Chem. 265, 15599–15605 (1990).
doi: 10.1016/S0021-9258(18)55439-9 pubmed: 2144287
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158 pubmed: 15572765
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925 pubmed: 20124702
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
doi: 10.1038/msb.2011.75 pubmed: 21988835 pmcid: 3261699
Nguyen, H. H., Park, J., Kang, S. & Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel) 15, 10481–10510 (2015).
doi: 10.3390/s150510481 pubmed: 25951336
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).
doi: 10.1093/nar/gkv314 pubmed: 25908787
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
doi: 10.1016/j.jmb.2007.05.022 pubmed: 17681537
Pettersen, E. F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084 pubmed: 15264254
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Giladi, M. et al. Dynamic distinctions in the Na(+)/Ca(2+) exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 292, 12311–12323 (2017).
doi: 10.1074/jbc.M117.787168 pubmed: 28572509 pmcid: 5519378
Giladi, M. et al. Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 6, 20753 (2016).
doi: 10.1038/srep20753 pubmed: 26876271 pmcid: 4753433

Auteurs

Anand Kumar (A)

Integrated Drug Discovery, Sanofi R&D, Paris, France.

Francis Duffieux (F)

Large Molecules Research, Sanofi R&D, Paris, France.

Marie Gagnaire (M)

Large Molecules Research, Sanofi R&D, Paris, France.

Chiara Rapisarda (C)

Integrated Drug Discovery, Sanofi R&D, Paris, France.

Thomas Bertrand (T)

Integrated Drug Discovery, Sanofi R&D, Paris, France.

Alexey Rak (A)

Integrated Drug Discovery, Sanofi R&D, Paris, France. Alexey.Rak@sanofi.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH