Prenatal testing for imprinting disorders: A laboratory perspective.


Journal

Prenatal diagnosis
ISSN: 1097-0223
Titre abrégé: Prenat Diagn
Pays: England
ID NLM: 8106540

Informations de publication

Date de publication:
07 2023
Historique:
revised: 07 06 2023
received: 06 02 2023
accepted: 13 06 2023
medline: 18 7 2023
pubmed: 21 6 2023
entrez: 21 6 2023
Statut: ppublish

Résumé

Imprinting Disorders (ImpDis) are a group of congenital syndromes associated with up to four different types of molecular disturbances affecting the monoallelic and parent-of-origin specific expression of genomically imprinted genes. Though each ImpDis is characterized by aberrations at a distinct genetic site and a specific set of postnatal clinical signs, there is a broad overlap between several of them. In particular, the prenatal features of ImpDis are non-specific. Therefore, the decision on the appropriate molecular testing strategy is difficult. A further molecular characteristic of ImpDis is (epi)genetic mosaicism, which makes prenatal testing for ImpDis challenging. Accordingly, sampling and diagnostic workup has to consider the methodological limitations. Furthermore, the prediction of the clinical outcome of a pregnancy can be difficult. False-negative results can occur, and therefore fetal imaging should be the diagnostic tool on which decisions on the management of the pregnancy should be based. In summary, the decision for molecular prenatal testing for ImpDis should be based on close exchanges between clinicians, geneticists, and the families before the initiation of the test. These discussions should weigh the chances and challenges of the prenatal test, with focus on the need of the family.

Identifiants

pubmed: 37340544
doi: 10.1002/pd.6398
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

973-982

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : EG 115/13-1
Organisme : Italian Ministry of Health
ID : 08C724
Organisme : Italian Ministry of Health
ID : 08C123

Informations de copyright

© 2023 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.

Références

Mackay DJG, Temple IK. Human imprinting disorders: principles, practice, problems and progress. Eur J Med Genet. 2017;60(11):618-626. https://doi.org/10.1016/j.ejmg.2017.08.014
Soellner L, Begemann M, Mackay DJ, et al. Recent advances in imprinting disorders. Clin Genet. 2017;91(1):3-13. https://doi.org/10.1111/cge.12827
Mackay DJG, Bliek J, Lombardi MP, et al. Discrepant molecular and clinical diagnoses in Beckwith-Wiedemann and Silver-Russell syndromes. Genet Res. 2019;101:e3. https://doi.org/10.1017/s001667231900003x
Mackay D, Bliek J, Kagami M, et al. First step towards a consensus strategy for multi-locus diagnostic testing of imprinting disorders. Clin Epigenet. 2022;14(1):143. https://doi.org/10.1186/s13148-022-01358-9
Beygo J, Buiting K, Ramsden SC, Ellis R, Clayton-Smith J, Kanber D. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur J Hum Genet. 2019;27(9):1326-1340. https://doi.org/10.1038/s41431-019-0435-0
Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6(2):137-143. https://doi.org/10.1002/ajmg.1320060207
Wen J, Chai H, Grommisch B, et al. Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients. Am J Med Genet A. 2022;188(6):1728-1738. https://doi.org/10.1002/ajmg.a.62693
Kotzot D. Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements. J Med Genet. 2001;38(8):497-507. https://doi.org/10.1136/jmg.38.8.497
Del Gaudio D, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(7):1133-1141. https://doi.org/10.1038/s41436-020-0782-9
Kotzot D. Advanced parental age in maternal uniparental disomy (UPD): implications for the mechanism of formation. Eur J Hum Genet. 2004;12(5):343-346. https://doi.org/10.1038/sj.ejhg.5201158
Shaffer LG. Risk estimates for uniparental disomy following prenatal detection of a nonhomologous Robertsonian translocation. Prenat Diagn. 2006;26(4):303-307. https://doi.org/10.1002/pd.1384
Moradkhani K, Cuisset L, Boisseau P, et al. Risk estimation of uniparental disomy of chromosome 14 or 15 in a fetus with a parent carrying a non-homologous Robertsonian translocation. Should we still perform prenatal diagnosis? Prenat Diagn. 2019;39(11):986-992. https://doi.org/10.1002/pd.5518
Kotzot D. Prenatal testing for uniparental disomy: indications and clinical relevance. Ultrasound Obstet Gynecol. 2008;31(1):100-105. https://doi.org/10.1002/uog.5133
Liehr T, Ewers E, Hamid AB, et al. Small supernumerary marker chromosomes and uniparental disomy have a story to tell. J Histochem Cytochem. 2011;59(9):842-848. https://doi.org/10.1369/0022155411412780
Scheuvens R, Begemann M, Soellner L, et al. Maternal uniparental disomy of chromosome 16 [upd(16)mat]: clinical features are rather caused by (hidden) trisomy 16 mosaicism than by upd(16)mat itself. Clin Genet. 2017;92(1):45-51. https://doi.org/10.1111/cge.12958
Eggermann T, Oehl-Jaschkowitz B, Dicks S, et al. The maternal uniparental disomy of chromosome 6 (upd(6)mat) "phenotype": result of placental trisomy 6 mosaicism? Mol Genet Genomic Med. 2017;5(6):668-677. https://doi.org/10.1002/mgg3.324
Yamazawa K, Inoue T, Sakemi Y, et al. Loss of imprinting of the human-specific imprinted gene ZNF597 causes prenatal growth retardation and dysmorphic features: implications for phenotypic overlap with Silver-Russell syndrome. J Med Genet. 2021;58(6):427-432. https://doi.org/10.1136/jmedgenet-2020-107019
Cardarelli L, Sparago A, De Crescenzo A, et al. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family. Pediatr Dev Pathol. 2010;13(4):326-330. https://doi.org/10.2350/09-07-0686-cr.1
Beygo J, Elbracht M, de Groot K, et al. Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. Eur J Hum Genet. 2015;23(2):180-188. https://doi.org/10.1038/ejhg.2014.72
Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235-248. https://doi.org/10.1038/s41576-018-0092-0
Sanchez-Delgado M, Riccio A, Eggermann T, et al. Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet. 2016;32(7):444-455. https://doi.org/10.1016/j.tig.2016.05.001
Maher ER, Brueton LA, Bowdin SC, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40(1):62-64. https://doi.org/10.1136/jmg.40.1.62
Cortessis VK, Azadian M, Buxbaum J, et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet. 2018;35(6):943-952. https://doi.org/10.1007/s10815-018-1173-x
Carli D, Operti M, Russo S, et al. Clinical and molecular characterization of patients affected by Beckwith-Wiedemann spectrum conceived through assisted reproduction techniques. Clin Genet. 2022;102(4):314-323. https://doi.org/10.1111/cge.14193
Eggermann T, Yapici E, Bliek J, et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenet. 2022;14(1):41. https://doi.org/10.1186/s13148-022-01259-x
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. Genes. 2021;12(8):1214. https://doi.org/10.3390/genes12081214
Nguyen NMP, Khawajkie Y, Mechtouf N, et al. The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod Pathol. 2018;31(7):1116-1130. https://doi.org/10.1038/s41379-018-0031-9
Mackay DJ, Eggermann T, Buiting K, et al. Multilocus methylation defects in imprinting disorders. Biomol Concepts. 2015;6(1):47-57. https://doi.org/10.1515/bmc-2014-0037
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update. 2020;26(2):197-213. https://doi.org/10.1093/humupd/dmz045
Kotzot D. Complex and segmental uniparental disomy updated. J Med Genet. 2008;45(9):545-556. https://doi.org/10.1136/jmg.2008.058016
Wolstenholme J. Confined placental mosaicism for trisomies 2, 3, 7, 8, 9, 16, and 22: their incidence, likely origins, and mechanisms for cell lineage compartmentalization. Prenat Diagn. 1996;16(6):511-524. https://doi.org/10.1002/(sici)1097-0223(199606)16:6<511::aid-pd904>3.0.co;2-8
Kalousek DK, Langlois S, Barrett I, et al. Uniparental disomy for chromosome 16 in humans. Am J Hum Genet. 1993;52(1):8-16.
Heide S, Chantot-Bastaraud S, Keren B, et al. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet. 2018;55(3):205-213. https://doi.org/10.1136/jmedgenet-2017-104919
van der Werf IM, Buiting K, Czeschik C, et al. Novel microdeletions on chromosome 14q32.2 suggest a potential role for non-coding RNAs in Kagami-Ogata syndrome. Eur J Hum Genet. 2016;24(12):1724-1729. https://doi.org/10.1038/ejhg.2016.82
Eggermann T, Brioude F, Russo S, et al. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: a challenge for molecular analysis and genetic counseling. Eur J Hum Genet. 2016;24(6):784-793. https://doi.org/10.1038/ejhg.2015.224
Nygren AO, Ameziane N, Duarte HM, et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005;33(14):e128. https://doi.org/10.1093/nar/gni127
Russo S, Calzari L, Mussa A, et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenet. 2016;8(1):23. https://doi.org/10.1186/s13148-016-0183-8
Hoppman N, Rumilla K, Lauer E, Kearney H, Thorland E. Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays. Genet Med. 2018;20(12):1522-1527. https://doi.org/10.1038/gim.2018.24
Alhendi ASN, Lim D, McKee S, et al. Whole-genome analysis as a diagnostic tool for patients referred for diagnosis of Silver-Russell syndrome: a real-world study. J Med Genet. 2021;59(6):613-622. https://doi.org/10.1136/jmedgenet-2021-107699
Paganini L, Carlessi N, Fontana L, et al. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics. 2015;10(7):643-649. https://doi.org/10.1080/15592294.2015.1057383
Beygo J, Kuchler A, Gillessen-Kaesbach G, et al. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet. 2017;25(8):935-945. https://doi.org/10.1038/ejhg.2017.91
Azzi S, Rossignol S, Steunou V, et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet. 2009;18(24):4724-4733. https://doi.org/10.1093/hmg/ddp435
Ochoa E, Lee S, Lan-Leung B, et al. ImprintSeq, a novel tool to interrogate DNA methylation at human imprinted regions and diagnose multilocus imprinting disturbance. Genet Med. 2021.
Stanurova J, Neureiter A, Hiber M, et al. Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing. Sci Rep. 2016;6(1):30792. https://doi.org/10.1038/srep30792
Mastromoro G, Guadagnolo D, Marchionni E, et al. Mosaic genome-wide paternal uniparental disomy after discordant results from primary fetal samples and cultured cells. Am J Med Genet. 2023;191(4):1101-1106. https://doi.org/10.1002/ajmg.a.63112
Bliek J, Alders M, Maas SM, et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet. 2009;17(12):1625-1634. https://doi.org/10.1038/ejhg.2009.77
Keravnou A, Ioannides M, Loizides C, et al. MeDIP combined with in-solution targeted enrichment followed by NGS: inter-individual methylation variability of fetal-specific biomarkers and their implementation in a proof of concept study for NIPT. PLoS One. 2018;13(6):e0199010. https://doi.org/10.1371/journal.pone.0199010
Wang HD, Liu L, Zhao HR, et al. Detection of fetal epigenetic biomarkers through genome-wide DNA methylation study for non-invasive prenatal diagnosis. Mol Med Rep. 2017;15(6):3989-3998. https://doi.org/10.3892/mmr.2017.6506
Aref-Eshghi E, Bend EG, Colaiacovo S, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet. 2019;104(4):685-700. https://doi.org/10.1016/j.ajhg.2019.03.008
Levy MA, McConkey H, Kerkhof J, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 2022;3(1):100075. https://doi.org/10.1016/j.xhgg.2021.100075

Auteurs

Jasmin Beygo (J)

Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Silvia Russo (S)

Medical Cytogenetics and Molecular Genetics Laboratory, IRCCS, Istituto Auxologico Italiano, Milan, Italy.

Pierpaola Tannorella (P)

Medical Cytogenetics and Molecular Genetics Laboratory, IRCCS, Istituto Auxologico Italiano, Milan, Italy.

Gijs W E Santen (GWE)

Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Andreas Dufke (A)

Institute for Medical Genetics and Applied Genomics, Medical Faculty, University of Tübingen, Tübingen, Germany.

Elia Schlaich (E)

Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Thomas Eggermann (T)

Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH