Diagnostic gastrointestinal markers in primary lung cancer and pulmonary metastases.
A33
CDX2
CK20
Cadherin 17
Immunohistochemistry
MUC2
SATB2
Journal
Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843
Informations de publication
Date de publication:
22 Jun 2023
22 Jun 2023
Historique:
received:
30
03
2023
accepted:
15
06
2023
revised:
05
06
2023
medline:
23
6
2023
pubmed:
23
6
2023
entrez:
22
6
2023
Statut:
aheadofprint
Résumé
Histopathological diagnosis of pulmonary tumors is essential for treatment decisions. The distinction between primary lung adenocarcinoma and pulmonary metastasis from the gastrointestinal (GI) tract may be difficult. Therefore, we compared the diagnostic value of several immunohistochemical markers in pulmonary tumors. Tissue microarrays from 629 resected primary lung cancers and 422 resected pulmonary epithelial metastases from various sites (whereof 275 colorectal cancer) were investigated for the immunohistochemical expression of CDH17, GPA33, MUC2, MUC6, SATB2, and SMAD4, for comparison with CDX2, CK20, CK7, and TTF-1. The most sensitive markers for GI origin were GPA33 (positive in 98%, 60%, and 100% of pulmonary metastases from colorectal cancer, pancreatic cancer, and other GI adenocarcinomas, respectively), CDX2 (99/40/100%), and CDH17 (99/0/100%). In comparison, SATB2 and CK20 showed higher specificity, with expression in 5% and 10% of mucinous primary lung adenocarcinomas and both in 0% of TTF-1-negative non-mucinous primary lung adenocarcinomas (25-50% and 5-16%, respectively, for GPA33/CDX2/CDH17). MUC2 was negative in all primary lung cancers, but positive only in less than half of pulmonary metastases from mucinous adenocarcinomas from other organs. Combining six GI markers did not perfectly separate primary lung cancers from pulmonary metastases including subgroups such as mucinous adenocarcinomas or CK7-positive GI tract metastases. This comprehensive comparison suggests that CDH17, GPA33, and SATB2 may be used as equivalent alternatives to CDX2 and CK20. However, no single or combination of markers can categorically distinguish primary lung cancers from metastatic GI tract cancer.
Identifiants
pubmed: 37349623
doi: 10.1007/s00428-023-03583-w
pii: 10.1007/s00428-023-03583-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
The WHO Classification of Tumours Editorial Board (2021) Thoracic tumours. IARC Press, Lyon (France)
Yatabe Y, Dacic S, Borczuk AC et al (2019) Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J Thorac Oncol 14:377–407. https://doi.org/10.1016/j.jtho.2018.12.005
doi: 10.1016/j.jtho.2018.12.005
pubmed: 30572031
Anagnostou VK, Syrigos KN, Bepler G, Homer RJ, Rimm DL (2009) Thyroid transcription factor 1 is an independent prognostic factor for patients with stage I lung adenocarcinoma. J Clin Oncol 27:271–278. https://doi.org/10.1200/JCO.2008.17.0043
doi: 10.1200/JCO.2008.17.0043
pubmed: 19064983
Vidarsdottir H, Tran L, Nodin B et al (2018) Comparison of three different TTF-1 clones in resected primary lung cancer and epithelial pulmonary metastases. Am J Clin Pathol 150:533–544. https://doi.org/10.1093/ajcp/aqy083
doi: 10.1093/ajcp/aqy083
pubmed: 30169783
Musayeva M, Sak SD, Ozakinci H, Boyacigil S, Coskun O (2020) Evaluation of epidermal growth factor receptor mutations and thyroid transcription factor-1 status in Turkish non-small cell lung carcinoma patients: a study of 600 cases from a single center. Turk Gogus Kalp Damar Cerrahisi Derg 28:143–150. https://doi.org/10.5606/tgkdc.dergisi.2020.18196
doi: 10.5606/tgkdc.dergisi.2020.18196
pubmed: 32175155
pmcid: 7067031
Bulutay P, AkyUrek N, Memi SL (2021) Clinicopathological and prognostic significance of the EML4-ALK translocation and IGFR1, TTF1, napsin A expression in patients with lung adenocarcinoma. Turk Patoloji Derg 37:7–17. https://doi.org/10.5146/tjpath.2020.01503
doi: 10.5146/tjpath.2020.01503
pubmed: 32876329
Rossi G, Cavazza A, Righi L et al (2014) Napsin-A, TTF-1, EGFR, and ALK status determination in lung primary and metastatic mucin-producing adenocarcinomas. Int J Surg Pathol 22:401–407. https://doi.org/10.1177/1066896914527609
doi: 10.1177/1066896914527609
pubmed: 24651909
Kishikawa S, Hayashi T, Saito T et al (2021) Diffuse expression of MUC6 defines a distinct clinicopathological subset of pulmonary invasive mucinous adenocarcinoma. Mod Pathol 34:786–797. https://doi.org/10.1038/s41379-020-00690-w
doi: 10.1038/s41379-020-00690-w
pubmed: 33024306
Ueda D, Ito M, Tsutani Y et al (2021) Comprehensive analysis of the clinicopathological features, targetable profile, and prognosis of mucinous adenocarcinoma of the lung. J Cancer Res Clin Oncol 147:3709–3718. https://doi.org/10.1007/s00432-021-03609-3
doi: 10.1007/s00432-021-03609-3
pubmed: 33796913
Saad RS, Cho P, Silverman JF, Liu Y (2004) Usefulness of Cdx2 in separating mucinous bronchioloalveolar adenocarcinoma of the lung from metastatic mucinous colorectal adenocarcinoma. Am J Clin Pathol 122:421–427. https://doi.org/10.1309/UMF7-15KR-G2V1-98YD
doi: 10.1309/UMF7-15KR-G2V1-98YD
pubmed: 15362373
Mazziotta RM, Borczuk AC, Powell CA, Mansukhani M (2005) CDX2 immunostaining as a gastrointestinal marker: expression in lung carcinomas is a potential pitfall. Appl Immunohistochem Mol Morphol 13:55–60. https://doi.org/10.1097/00129039-200503000-00009
doi: 10.1097/00129039-200503000-00009
pubmed: 15722794
Chu PG, Chung L, Weiss LM, Lau SK (2011) Determining the site of origin of mucinous adenocarcinoma: an immunohistochemical study of 175 cases. Am J Surg Pathol 35:1830–1836. https://doi.org/10.1097/PAS.0b013e3182299c25
doi: 10.1097/PAS.0b013e3182299c25
pubmed: 21881489
Vidarsdottir H, Tran L, Nodin B et al (2019) Immunohistochemical profiles in primary lung cancers and epithelial pulmonary metastases. Hum Pathol 84:221–230. https://doi.org/10.1016/j.humpath.2018.10.009
doi: 10.1016/j.humpath.2018.10.009
pubmed: 30389437
Alabdullah B, Hadji-Ashrafy A (2022) Identification of the most specific markers to differentiate primary pulmonary carcinoma from metastatic gastrointestinal carcinoma to the lung. Diagn Pathol 17:7. https://doi.org/10.1186/s13000-021-01184-2
doi: 10.1186/s13000-021-01184-2
pubmed: 35027072
pmcid: 8759183
Su MC, Yuan RH, Lin CY, Jeng YM (2008) Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol 21:1379–1386. https://doi.org/10.1038/modpathol.2008.107
doi: 10.1038/modpathol.2008.107
pubmed: 18552820
Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT (2012) Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol 138:211–222. https://doi.org/10.1309/AJCPKSHXI3XEHW1J
doi: 10.1309/AJCPKSHXI3XEHW1J
pubmed: 22904132
Lin F, Shi J, Zhu S et al (2014) Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med 138:1015–1026. https://doi.org/10.5858/arpa.2013-0452-OA
doi: 10.5858/arpa.2013-0452-OA
pubmed: 24437456
Altree-Tacha D, Tyrrell J, Haas T (2017) CDH17 is a more sensitive marker for gastric adenocarcinoma than CK20 and CDX2. Arch Pathol Lab Med 141:144–150. https://doi.org/10.5858/arpa.2015-0404-OA
doi: 10.5858/arpa.2015-0404-OA
pubmed: 28029907
Garinchesa P, Sakamoto J, Welt S, Real F, Rettig W, Old L (1996) Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int J Oncol 9:465–471. https://doi.org/10.3892/ijo.9.3.465
doi: 10.3892/ijo.9.3.465
pubmed: 21541536
Wong N, Adamczyk LA, Evans S, Cullen J, Oniscu A, Oien KA (2017) A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of colorectal carcinoma. Histopathology 71:34–41. https://doi.org/10.1111/his.13194
doi: 10.1111/his.13194
pubmed: 28226180
Magnusson K, de Wit M, Brennan DJ et al (2011) SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol 35:937–948. https://doi.org/10.1097/PAS.0b013e31821c3dae
doi: 10.1097/PAS.0b013e31821c3dae
pubmed: 21677534
Dragomir A, de Wit M, Johansson C, Uhlen M, Ponten F (2014) The role of SATB2 as a diagnostic marker for tumors of colorectal origin: results of a pathology-based clinical prospective study. Am J Clin Pathol 141:630–638. https://doi.org/10.1309/AJCPWW2URZ9JKQJU
doi: 10.1309/AJCPWW2URZ9JKQJU
pubmed: 24713733
Ma C, Olevian DC, Lowenthal BM et al (2018) Loss of SATB2 expression in colorectal carcinoma is associated with DNA mismatch repair protein deficiency and BRAF mutation. Am J Surg Pathol 42:1409–1417. https://doi.org/10.1097/PAS.0000000000001116
doi: 10.1097/PAS.0000000000001116
pubmed: 30001238
Dum D, Kromm D, Lennartz M et al (2023) SATB2 expression in human tumors. Arch Pathol Lab Med 147:451–464. https://doi.org/10.5858/arpa.2021-0317-OA
doi: 10.5858/arpa.2021-0317-OA
pubmed: 35917493
Lau SK, Weiss LM, Chu PG (2004) Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 122:61–69. https://doi.org/10.1309/9R66-73QE-C06D-86Y4
doi: 10.1309/9R66-73QE-C06D-86Y4
pubmed: 15272531
Ideno N, Ohtsuka T, Kono H et al (2013) Intraductal papillary mucinous neoplasms of the pancreas with distinct pancreatic ductal adenocarcinomas are frequently of gastric subtype. Ann Surg 258:141–151. https://doi.org/10.1097/SLA.0b013e31828cd008
doi: 10.1097/SLA.0b013e31828cd008
pubmed: 23532108
Walsh MD, Clendenning M, Williamson E et al (2013) Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Mod Pathol 26:1642–1656. https://doi.org/10.1038/modpathol.2013.101
doi: 10.1038/modpathol.2013.101
pubmed: 23807779
Nagata K, Horinouchi M, Saitou M et al (2007) Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg 14:243–254. https://doi.org/10.1007/s00534-006-1169-2
doi: 10.1007/s00534-006-1169-2
pubmed: 17520199
Pyo JS, Sohn JH, Kang G et al (2015) MUC2 expression is correlated with tumor differentiation and inhibits tumor invasion in gastric carcinomas: a systematic review and meta-analysis. J Pathol Transl Med 49:249–256. https://doi.org/10.4132/jptm.2015.03.27
doi: 10.4132/jptm.2015.03.27
pubmed: 26018517
pmcid: 4440937
Betge J, Schneider NI, Harbaum L et al (2016) MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch 469:255–265. https://doi.org/10.1007/s00428-016-1970-5
doi: 10.1007/s00428-016-1970-5
pubmed: 27298226
pmcid: 5007278
Kim SJ, Choi SJ, Yang J et al (2022) Pancreatic ductal adenocarcinoma with a predominant large duct pattern has better recurrence-free survival than conventional pancreatic ductal adenocarcinoma: a comprehensive histopathological, immunohistochemical, and mutational study. Hum Pathol 127:39–49. https://doi.org/10.1016/j.humpath.2022.05.018
doi: 10.1016/j.humpath.2022.05.018
pubmed: 35667635
Ritterhouse LL, Wu EY, Kim WG et al (2019) Loss of SMAD4 protein expression in gastrointestinal and extra-gastrointestinal carcinomas. Histopathology 75:546–551. https://doi.org/10.1111/his.13894
doi: 10.1111/his.13894
pubmed: 31054158
Krasinskas AM, Chiosea SI, Pal T, Dacic S (2014) KRAS mutational analysis and immunohistochemical studies can help distinguish pancreatic metastases from primary lung adenocarcinomas. Mod Pathol 27:262–270. https://doi.org/10.1038/modpathol.2013.146
doi: 10.1038/modpathol.2013.146
pubmed: 23887294
Ali S, Cohen C, Little JV, Sequeira JH, Mosunjac MB, Siddiqui MT (2007) The utility of SMAD4 as a diagnostic immunohistochemical marker for pancreatic adenocarcinoma, and its expression in other solid tumors. Diagn Cytopathol 35:644–648. https://doi.org/10.1002/dc.20715
doi: 10.1002/dc.20715
pubmed: 17854080
Micke P, Botling J, Mattsson JSM et al (2019) Mucin staining is of limited value in addition to basic immunohistochemical analyses in the diagnostics of non-small cell lung cancer. Sci Rep 9:1319. https://doi.org/10.1038/s41598-018-37722-0
doi: 10.1038/s41598-018-37722-0
pubmed: 30718697
pmcid: 6362145
Staaf J, Tran L, Soderlund L et al (2020) Diagnostic value of insulinoma-associated protein 1 (INSM1) and comparison with established neuroendocrine markers in pulmonary cancers. Arch Pathol Lab Med 144:1075–1085. https://doi.org/10.5858/arpa.2019-0250-OA
doi: 10.5858/arpa.2019-0250-OA
pubmed: 31913660
Micke P, Mattsson JS, Djureinovic D et al (2016) The impact of the fourth edition of the WHO classification of lung tumours on histological classification of resected pulmonary NSCCs. J Thorac Oncol 11:862–872. https://doi.org/10.1016/j.jtho.2016.01.020
doi: 10.1016/j.jtho.2016.01.020
pubmed: 26872818
Ericson-Lindquist K, Johansson A, Leveen P et al (2017) Targeted sequencing may facilitate differential diagnostics of pulmonary tumours: a case series. Diagn Pathol 12:31. https://doi.org/10.1186/s13000-017-0621-8
doi: 10.1186/s13000-017-0621-8
pubmed: 28347348
pmcid: 5368924
Chang YL, Lee YC, Liao WY, Wu CT (2004) The utility and limitation of thyroid transcription factor-1 protein in primary and metastatic pulmonary neoplasms. Lung Cancer 44:149–157. https://doi.org/10.1016/j.lungcan.2003.10.008
doi: 10.1016/j.lungcan.2003.10.008
pubmed: 15084379
Moldvay J, Jackel M, Bogos K et al (2004) The role of TTF-1 in differentiating primary and metastatic lung adenocarcinomas. Pathol Oncol Res 10:85–88. https://doi.org/10.1007/BF02893461
doi: 10.1007/BF02893461
pubmed: 15188024
Sterlacci W, Fiegl M, Hilbe W, Auberger J, Mikuz G, Tzankov A (2009) Clinical relevance of neuroendocrine differentiation in non-small cell lung cancer assessed by immunohistochemistry: a retrospective study on 405 surgically resected cases. Virchows Arch 455:125–132. https://doi.org/10.1007/s00428-009-0812-0
doi: 10.1007/s00428-009-0812-0
pubmed: 19652998
Ye J, Hameed O, Findeis-Hosey JJ et al (2012) Diagnostic utility of PAX8, TTF-1 and napsin A for discriminating metastatic carcinoma from primary adenocarcinoma of the lung. Biotech Histochem 87:30–34. https://doi.org/10.3109/10520295.2011.591838
doi: 10.3109/10520295.2011.591838
pubmed: 21838611
Warth A, Muley T, Herpel E et al (2012) Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 61:1017–1025. https://doi.org/10.1111/j.1365-2559.2012.04308.x
doi: 10.1111/j.1365-2559.2012.04308.x
pubmed: 22882703
Koh J, Go H, Kim MY, Jeon YK, Chung JH, Chung DH (2014) A comprehensive immunohistochemistry algorithm for the histological subtyping of small biopsies obtained from non-small cell lung cancers. Histopathology 65:868–878. https://doi.org/10.1111/his.12507
doi: 10.1111/his.12507
pubmed: 25130792
Bian T, Zhao J, Feng J et al (2017) Combination of cadherin-17 and SATB homeobox 2 serves as potential optimal makers for the differential diagnosis of pulmonary enteric adenocarcinoma and metastatic colorectal adenocarcinoma. Oncotarget 8:63442–63452. https://doi.org/10.18632/oncotarget.18828
doi: 10.18632/oncotarget.18828
pubmed: 28969003
pmcid: 5609935
Brandler TC, Jelloul FZ, Soto D, Das K, Rosen L, Bhuiya TA (2015) Young investigator challenge: cadherin-17 and SATB2 in cytology specimens: do these new immunostains help in differentiating metastatic colorectal adenocarcinoma from adenocarcinomas of other origins? Cancer Cytopathol 123:706–713. https://doi.org/10.1002/cncy.21644
doi: 10.1002/cncy.21644
pubmed: 26671737
Tsuta K, Ishii G, Nitadori J et al (2006) Comparison of the immunophenotypes of signet-ring cell carcinoma, solid adenocarcinoma with mucin production, and mucinous bronchioloalveolar carcinoma of the lung characterized by the presence of cytoplasmic mucin. J Pathol 209:78–87. https://doi.org/10.1002/path.1947
doi: 10.1002/path.1947
pubmed: 16463270
Strickland S, Parra-Herran C (2016) Immunohistochemical characterization of appendiceal mucinous neoplasms and the value of special AT-rich sequence-binding protein 2 in their distinction from primary ovarian mucinous tumours. Histopathology 68:977–987. https://doi.org/10.1111/his.12899
doi: 10.1111/his.12899
pubmed: 26542609