Decolorization of porcine hemoglobin hydrolysates: The role of peptide characteristics and pH values.


Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
Aug 2023
Historique:
revised: 23 05 2023
received: 01 02 2023
accepted: 31 05 2023
medline: 7 8 2023
pubmed: 23 6 2023
entrez: 23 6 2023
Statut: ppublish

Résumé

The unpleasant color caused by heme limits the utilization of hemoglobin as a food ingredient. Enzymatic hydrolysis has been used to decolorize hemoglobin, but the underlying mechanisms are poorly understood. The aim of this study was to investigate the decolorization efficiency of porcine hemoglobin using different enzymes and final pH values, and to elucidate their influence on decolorization. Based on higher yields and better decolorization, hemoglobin hydrolysates produced by papain, bromelain, savinase, and protease A were further studied. Compared to hydrolysates by savinase and protease A, a higher proportion of histidine-containing peptides was responsible for better decolorization by papain and bromelain. For all hydrolysates, a moderate reduction in pH to 4.0-5.0 facilitated decolorization of the hydrolysates. Similar peptide profiles of hydrolysates from the same enzyme treatment reflected that pH mainly affected the precipitation of the heme-containing fraction through heme-heme interaction rather than heme-peptide interaction. Overall, this study sheds light on the use of enzymatic hydrolysis to remove the heme group from hemoglobin. PRACTICAL APPLICATION: Slaughterhouses produce tons of protein-rich blood each year. Due to the presence of the heme group in hemoglobin, blood has a dark red color and metallic taste, making it generally unacceptable for consumers. This study provided information on the decolorization of porcine hemoglobin by removing the heme fraction, which should facilitate the utilization of decolored hemoglobin hydrolysates as nutritional food ingredients.

Identifiants

pubmed: 37350077
doi: 10.1111/1750-3841.16679
doi:

Substances chimiques

Bromelains 9001-00-7
Papain EC 3.4.22.2
Hemoglobins 0
Peptides 0
Peptide Hydrolases EC 3.4.-
Heme 42VZT0U6YR
Protein Hydrolysates 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3410-3421

Subventions

Organisme : Norma og Frode Jacobsens fond

Informations de copyright

© 2023 The Authors. Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.

Références

Álvarez, C., Rendueles, M., & Díaz, M. (2012). Production of porcine hemoglobin peptides at moderate temperature and medium pressure under a nitrogen stream. Functional and antioxidant properties. Journal of Agricultural and Food Chemistry, 60(22), 5636-5643. https://doi.org/10.1021/jf300400k
Bak, K. H., Petersen, M. A., Lametsch, R., Hansen, E. T., & Ruiz-Carrascal, J. (2018). Development of volatile compounds during hydrolysis of porcine hemoglobin with papain. Molecules, 23(2), 357. https://doi.org/10.3390/molecules23020357
Chhem-Kieth, S., Lametsch, R., Hansen, E. T., & Ruiz-Carrascal, J. (2019). Storage and thermal stability of novel heme-based pigments prepared from porcine hemoglobin. Journal of Food Process Engineering, 42(3), e12994. https://doi.org/10.1111/jfpe.12994
Deng, H. L., Zheng, J., Zhang, F. S., Wang, Y., & Kan, J. Q. (2014). Isolation of angiotensin I-converting enzyme inhibitor from pepsin hydrolysate of porcine hemoglobin. European Food Research and Technology, 239(6), 933-940. https://doi.org/10.1007/s00217-014-2290-0
Fellendorf, S., O'Sullivan, M. G., & Kerry, J. P. (2017). Effect of different salt and fat levels on the physicochemical properties and sensory quality of black pudding. Food Science & Nutrition, 5(2), 273-284. https://doi.org/10.1002/fsn3.390
Fu, Y., Bak, K. H., Liu, J., De Gobba, C., Tøstesen, M., Hansen, E. T., Petersen, M. A., Ruiz-Carrascal, J., Bredie, W. L., & Lametsch, R. (2019). Protein hydrolysates of porcine hemoglobin and blood: Peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Research International, 121, 28-38. https://doi.org/10.1016/j.foodres.2019.03.017
Hayakawa, S., Matsuura, Y., Nakamura, R., & Sato, Y. (1986). Effect of heat-treatment on preparation of colorless globin from bovine hemoglobin using soluble carboxymethyl cellulose. Journal of Food Science, 51(3), 786-796. https://doi.org/10.1111/j.1365-2621.1986.tb13933.x
Jin, S. K., Choi, J. S., & Yim, D. G. (2020). Hydrolysis conditions of porcine blood proteins and antimicrobial effects of their hydrolysates. Food Science of Animal Resources, 40(2), 172-182. https://doi.org/10.5851/kosfa.2020.e2
Lebrun, F., Bazus, A., Dhulster, P., & Guillochon, D. (1998). Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates. Journal of Agricultural and Food Chemistry, 46, 5017-5025. https://doi.org/10.1021/jf9805698
Lee, Y. Z., Wnag, R. M., & Nakai, S. (1990). Preparation of colorless globin from bovine hemoglobin using sodium alginate. Journal of Food Science, 55(2), 577-578. https://doi.org/10.1111/j.1365-2621.1990.tb06821.x
Li, Q., Fu, Y., Zhang, L. T., Otte, J., & Lametsch, R. (2020). Plastein from hydrolysates of porcine hemoglobin and meat using Alcalase and papain. Food Chemistry, 320, 126654. https://doi.org/10.1016/j.foodchem.2020.126654
Li, Q., Liu, J., De Gobba, C., Zhang, L. T., Bredie, W. L. P., & Lametsch, R. (2020). Production of taste enhancers from protein hydrolysates of porcine hemoglobin and meat using Bacillus amyloliquefaciens gamma-glutamyltranspeptidase. Journal of Agricultural and Food Chemistry, 68(42), 11782-11789. https://doi.org/10.1021/acs.jafc.0c04513
Liu, X. Q., Yonekura, M., Tsutsumi, M., & Sano, Y. (1996). Physicochemical properties of aggregates of globin hydrolysates. Journal of Agricultural and Food Chemistry, 44(10), 2957-2961. https://doi.org/10.1021/jf9505786
Lu, T.-H., Panneerselvam, K., Liaw, Y.-C., Kan, P., & Lee, C.-J. (2000). Structure determination of porcine haemoglobin. Acta Crystallographica. Section D, Biological Crystallography, 56(3), 304-312. https://doi.org/10.1107/S0907444900000093
Lynch, S. A., Mullen, A. M., O'Neill, E. E., & Garcia, C. A. (2017). Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing. Comprehensive Reviews in Food Science and Food Safety, 16(2), 330-344. https://doi.org/10.1111/1541-4337.12254
Manguy, J., Jehl, P., Dillon, E. T., Davey, N. E., Shields, D. C., & Holton, T. A. (2017). Peptigram: A web-based application for peptidomics data visualization. Journal of Proteome Research, 16(2), 712-719. https://doi.org/10.1021/acs.jproteome.6b00751
Merz, M., Eisele, T., Berends, P., Appel, D., Rabe, S., Blank, I., Stressler, T., & Fischer, L. (2015). Flavourzyme, an enzyme preparation with industrial relevance: Automated nine-step purification and partial characterization of eight enzymes. Journal of Agricultural and Food Chemistry, 63(23), 5682-5693. https://doi.org/10.1021/acs.jafc.5b01665
Palani, S. N., Sankaranarayanan, R., & Tennyson, J. (2021). Comparative study of potyvirid NIa proteases and their cleavage sites. Archives of Virology, 166(4), 1141-1149. https://doi.org/10.1007/s00705-021-04997-0
Pimentel, F. B., Cermeño, M., Kleekayai, T., Harnedy, P. A., FitzGerald, R. J., Alves, R. C., & Oliveira, M. B. P. (2020). Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Research International, 136, 109309. https://doi.org/10.1016/j.foodres.2020.109309
Raksakulthai, R., & Haard, N. F. (2003). Exopeptidases and their application to reduce bitterness in food: A review. Critical Reviews in Food Science and Nutrition, 43(4), 401-445. https://doi.org/10.1080/10408690390826572
Sanchez-Reinoso, Z., Cournoyer, A., Thibodeau, J., Said, L. B., Fliss, I., Bazinet, L., & Mikhaylin, S. (2021). Effect of pH on the antimicrobial activity and peptide population of pepsin hydrolysates derived from bovine and porcine hemoglobins. ACS Food Science & Technology, 1(9), 1687-1701. https://doi.org/10.1021/acsfoodscitech.1c00141
Shi, J., de Roos, A., Schouten, O., Zheng, C. Y., Vink, C., Vonk, B., Kliphuis, A., Schaap, A., & Edens, L. (2015). Properties of hemoglobin decolorized with a histidine-specific protease. Journal of Food Science, 80(6), E1202-E1208. https://doi.org/10.1111/1750-3841.12809
Slinde, E. (1987). Color of black salami sausage: Dissociation of heme from myoglobin and hemoglobin. Journal of Food Science, 52(5), 1152-1154. https://doi.org/10.1111/j.1365-2621.1987.tb14031.x
Spellman, D., McEvoy, E., O'Cuinn, G., & FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447-453. https://doi.org/10.1016/S0958-6946(03)00053-0
Sun, Q., Luo, Y. K., Shen, H. X., Li, X., & Yao, L. (2012). Purification and characterisation of a novel antioxidant peptide from porcine haemoglobin hydrolysate. International Journal of Food Science and Technology, 47(1), 148-154. https://doi.org/10.1111/j.1365-2621.2011.02820.x
Sun, Q., Shen, H., & Luo, Y. (2011). Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of Food Science and Technology, 48(1), 53-60. https://doi.org/10.1007/s13197-010-0115-0
Thomsen, M. C. F., & Nielsen, M. (2012). Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Research, 40(W1), W281-W287. https://doi.org/10.1093/nar/gks469
Toldra, M., Lynch, S. A., Couture, R., & Alvarez, C. (2019). Blood proteins as functional ingredients. In C. M. Galanakis (Ed.), Sustainable meat production and processing (pp. 85-101). Academic Press. https://doi.org/10.1016/B978-0-12-814874-7.00005-5
Toldra, M., Pares, D., Saguer, E., & Carretero, C. (2011). Hemoglobin hydrolysates from porcine blood obtained through enzymatic hydrolysis assisted by high hydrostatic pressure processing. Innovative Food Science & Emerging Technologies, 12(4), 435-442. https://doi.org/10.1016/j.ifset.2011.05.002
Wismerpedersen, J. (1988). Use of hemoglobin in foods - A review. Meat Science, 24(1), 31-45. https://doi.org/10.1016/0309-1740(89)90005-3

Auteurs

Qian Li (Q)

Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.

Longteng Zhang (L)

Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.

Yan Li (Y)

Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.

René Lametsch (R)

Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.

Articles similaires

Humans Male Female Anemia Myocardial Infarction
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH