In vitro and in vivo Inhibitory Activity of C-glycoside Flavonoid Extracts from Mung Bean Coat on Pancreatic Lipase and α-glucosidase.
C-glycoside flavonoids
Inhibition
Mung bean
Pancreatic lipase
α-glucosidase
Journal
Plant foods for human nutrition (Dordrecht, Netherlands)
ISSN: 1573-9104
Titre abrégé: Plant Foods Hum Nutr
Pays: Netherlands
ID NLM: 8803554
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
accepted:
07
06
2023
medline:
23
10
2023
pubmed:
23
6
2023
entrez:
23
6
2023
Statut:
ppublish
Résumé
Mung bean is a kind of legume commonly eaten by human. In the present study, a HPLC method for analyzing of two C-glycoside flavonoids, isovitexin and vitexin, in Mung bean was developed. Results showed that the flavonoids are mainly existed in Mung bean coat (MBC), while kernel contains very trace. The extraction of C-glycoside flavonoids from MBC was optimized. MBC extracts with isovitexin and vitexin contents of 29.0 ± 0.28% and 35.8 ± 0.19% were obtained with yield of 1.6 ± 0.21%. MBC extracts exhibited inhibitory activities on pancreatic lipase and α-glucosidase with IC
Identifiants
pubmed: 37351712
doi: 10.1007/s11130-023-01075-5
pii: 10.1007/s11130-023-01075-5
doi:
Substances chimiques
Flavonoids
0
Lipase
EC 3.1.1.3
alpha-Glucosidases
EC 3.2.1.20
C-glycoside
0
Glycoside Hydrolase Inhibitors
0
Plant Extracts
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
439-444Subventions
Organisme : National Natural Science Foundation of China
ID : 32060541
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Liu TT, Liu XT, Chen QX, Shi Y (2020) Lipase inhibitors for obesity: a review. Biomed Pharmacother 128:110314. https://doi.org/10.1016/j.biopha.2020.110314
doi: 10.1016/j.biopha.2020.110314
pubmed: 32485574
Maguire D, Talwar D, Shiels PG, McMillan D (2018) The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: a systematic review. Clin Nutr ESPEN 25:8–17. https://doi.org/10.1111/jfbc.13743
doi: 10.1111/jfbc.13743
pubmed: 29779823
Irondi EA, Adegoke BM, Effion ES, Oyewo SO, Alamu EO, Boligon AA (2019) Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Sci Hum Wellness 8:142–148. https://doi.org/10.1016/j.fshw.2019.03.012
doi: 10.1016/j.fshw.2019.03.012
Tucci SA, Boyland EJ, Halford JC (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetol Metab Syndr 3:125–143. https://doi.org/10.2147/DMSO.S7005
doi: 10.2147/DMSO.S7005
Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI (2012) Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets 16:269–297. https://doi.org/10.1517/14728222.2012.664134
doi: 10.1517/14728222.2012.664134
pubmed: 22360606
Feng J, Yang XW, Wang RF (2011) Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry 72:242–247. https://doi.org/10.1016/j.phytochem.2010.11.025
doi: 10.1016/j.phytochem.2010.11.025
pubmed: 21215978
Fatmawati S, Shimizu K, Kondo R (2011) Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 18:1053–1055. https://doi.org/10.1016/j.phymed.2011.03.011
doi: 10.1016/j.phymed.2011.03.011
pubmed: 21596546
Zhou JF, Wang WJ, Yin ZP, Zheng GD, Chen JG, Li JE, Chen LL, Zhang QF (2021) Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Biosci 43:101248. https://doi.org/10.1016/j.fbio.2021.101248
doi: 10.1016/j.fbio.2021.101248
Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015) Mung bean: Technological and nutritional potential. Crit Rev Food Sci Nutr 55:670–688. https://doi.org/10.1080/10408398.2012.671202
doi: 10.1080/10408398.2012.671202
pubmed: 24915360
Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M (2021) Neuroprotective potential of mung bean (Vigna radiata L.) polyphenols in Alzheimer’s disease: a review. J Agric Food Chem 69:11554. https://doi.org/10.1021/acs.jafc.1c04049
doi: 10.1021/acs.jafc.1c04049
pubmed: 34551518
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng NH, Shen Q (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, andhealth benefits. Nutrients 11:1238. https://doi.org/10.3390/nu11061238
doi: 10.3390/nu11061238
pubmed: 31159173
pmcid: 6627095
Ganesan K, Xu B (2018) A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci Nutr 7:11–33. https://doi.org/10.1016/j.fshw.2017.11.002
doi: 10.1016/j.fshw.2017.11.002
Luo J, Cai W, Wu T, Xu B (2016) Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 201:350–360. https://doi.org/10.1016/j.foodchem.2016.01.101
doi: 10.1016/j.foodchem.2016.01.101
pubmed: 26868587
Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:29–45. https://doi.org/10.1080/10408398.2015.1067595
doi: 10.1080/10408398.2015.1067595
Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M (2008) Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 106:475–481. https://doi.org/10.1016/j.foodchem.2007.06.016
doi: 10.1016/j.foodchem.2007.06.016
Jang YH, Kang MJ, Choe EO, Shin M, Kim JI (2014) Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotechnol 23:247–252. https://doi.org/10.1007/s10068-014-0034-3
doi: 10.1007/s10068-014-0034-3
Peng X, Zhang G, Liao Y, Gong D (2016) Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem 190:207–215. https://doi.org/10.1016/j.foodchem.2015.05.088
doi: 10.1016/j.foodchem.2015.05.088
pubmed: 26212963
Saboury AA (2009) Enzyme inhibition and activation: a general theory. J Iran Chem Soc 6:219–229. https://doi.org/10.1007/BF03245829
doi: 10.1007/BF03245829
Bi S, Yan L, Pang B, Wang Y (2012) Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique. J Lumin 132:132–140. https://doi.org/10.1016/j.jlumin.2011.08.014
doi: 10.1016/j.jlumin.2011.08.014
Chen T, Zhu S, Shang Y, Ge C, Jiang G (2012) Binding of dihydromyricetin to human hemoglobin: fluorescence and circular dichroism studies. Spectrochim Acta A Mol Biomol 93:125–130. https://doi.org/10.1016/j.saa.2012.02.109
doi: 10.1016/j.saa.2012.02.109
Nasri R, Bidel LP, Rugani N, Perrier V, Carrière F, Dubreucq E, Jay-Allemand C (2019) Inhibition of CpLIP2 lipase hydrolytic activity by four flavonols (galangin, kaempferol, quercetin, myricetin) compared to orlistat and their binding mechanisms studied by quenching of fluorescence. Molecules 24:2888. https://doi.org/10.3390/molecules24162888
doi: 10.3390/molecules24162888
pubmed: 31398944
pmcid: 6719172
Basque JR, Ménard D (2000) Establishment of culture systems of human gastric epithelium for the study of pepsinogen and gastric lipase synthesis and secretion. Microsc Res Tech 48(20000301):293–302. https://doi.org/10.1002/(SICI)1097-0029 . )48:5%3C293::AID-JEMT6%3E3.0.CO;2-A
doi: 10.1002/(SICI)1097-0029
pubmed: 10700046
Aloulou A, Carrière F (2008) Gastric lipase: an extremophilic interfacial enzyme with medical applications. Cell Mol Life Sci 65:851–855. https://doi.org/10.1007/s00018-008-7546-z
doi: 10.1007/s00018-008-7546-z
pubmed: 18213443
Nair AB, Jacob SA (2016) Simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31. https://doi.org/10.4103/0976-0105.177703
doi: 10.4103/0976-0105.177703
pubmed: 27057123
pmcid: 4804402