The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
15
12
2022
accepted:
06
06
2023
medline:
15
11
2023
pubmed:
24
6
2023
entrez:
24
6
2023
Statut:
ppublish
Résumé
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Identifiants
pubmed: 37354053
doi: 10.1111/1462-2920.16454
doi:
Substances chimiques
cereulide
0
Emetics
0
Depsipeptides
0
Exotoxins
0
Potassium
RWP5GA015D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2231-2249Informations de copyright
© 2023 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.
Références
Abee, T. (1995) Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiology Letters, 129(1), 1-9. Available from: https://doi.org/10.1111/j.1574-6968.1995.tb07548.x
Agata, N., Ohta, M., Mori, M. & Isobe, M. (1995) A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters, 129(1), 17-19. Available from: https://doi.org/10.1111/j.1574-6968.1995.tb07550.x
Alonzo, D.A. & Schmeing, T.M. (2020) Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations, 29, 2316-2347. Available from: https://doi.org/10.1002/pro.3979
Altayar, M. & Sutherland, A.D. (2006) Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. Journal of Applied Microbiology, 100(1), 7-14. Available from: https://doi.org/10.1111/j.1365-2672.2005.02764.x
Andersson, M.A., Hakulinen, P., Honkalampi-Hämäläinen, U., Hoornstra, D., Lhuguenot, J.-C., Mäki-Paakkanen, J. et al. (2007) Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon, 49(3), 351-367. Available from: https://doi.org/10.1016/j.toxicon.2006.10.006
Bağcıoğlu, M., Fricker, M., Johler, S. & Ehling-Schulz, M. (2019) Detection and identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy. Frontiers in Microbiology, 10. Available from: https://doi.org/10.3389/fmicb.2019.00902
Banerji, A., Jahne, M., Herrmann, M., Brinkman, N. & Keely, S. (2019) Bringing community ecology to bear on the issue of antimicrobial resistance. Frontiers in Microbiology, 10(November), 2626. Available from: https://doi.org/10.3389/fmicb.2019.02626
Bauer, T., Sipos, W., Stark, T.D., Käser, T., Knecht, C., Brunthaler, R. et al. (2018) First insights into within host translocation of the Bacillus cereus toxin cereulide using a porcine model.Frontiers in Microbiology, 9, 2652. Available from: https://doi.org/10.3389/fmicb.2018.02652
Bauer, T., Stark, T., Hofmann, T. & Ehling-Schulz, M. (2010) Development of a stable isotope dilution analysis for the quantification of the Bacillus cereus toxin cereulide in foods. Journal of Agricultural and Food Chemistry, 58(3), 1420-1428. Available from: https://doi.org/10.1021/jf9033046
Beeton, M.L., Atkinson, D.J. & Waterfield, N.R. (2013) An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen bacillus thuringiensis. Journal of Insect Physiology, 59(2), 223-231. Available from: https://doi.org/10.1016/j.jinsphys.2012.06.011
Behie, S.W. & Bidochka, M.J. (2013) Insects as a nitrogen source for plants. Insects, 4(3), 413-424. Available from: https://doi.org/10.3390/insects4030413
Berg, G., Krechel, A., Ditz, M., Sikora, R.A., Ulrich, A. & Hallmann, J. (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51(2), 215-229. Available from: https://doi.org/10.1016/j.femsec.2004.08.006
Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O. & Piddock, L.J.V. (2015) Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. Available from: https://doi.org/10.1038/nrmicro3380
Blanc, C., Sy, M., Djigal, D., Brauman, A., Normand, P. & Villenave, C. (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. European Journal of Soil Biology, 42, S70-S78. Available from: https://doi.org/10.1016/j.ejsobi.2006.06.003
Brien, J.O. & Wright, G.D. (2011) An ecological perspective of microbial secondary metabolism. Current Opinion in Biotechnology, 22(4), 552-558. Available from: https://doi.org/10.1016/j.copbio.2011.03.010
Chen, H., Verplaetse, E., Jauslin, T., Cosson, P., Slamti, L. & Lereclus, D. (2021) The fate of bacteria of the Bacillus cereus group in the amoeba environment. Microbial Ecology, 83, 1088-1104. Available from: https://doi.org/10.1007/s00248-021-01828-2
Cotter, G., Doyle, S. & Kavanagh, K. (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunology & Medical Microbiology, 27(2), 163-169. Available from: https://doi.org/10.1111/j.1574-695X.2000.tb01427.x
Cornelis, G. & Colson, C. (1975) Restriction of DNA in Yersinia enterocolitica detected by recipient ability for a derepressed R factor from Escherichia coli. Journal of General Microbiology, 87(2), 285-291. Available from: https://doi.org/10.1099/00221287-87-2-285
Daugschies, A. & Watzel, C. (1999) In vitro development of histotropic larvae of Oesophagostomum dentatum under various conditions of cultivation. Parasitology Research, 85(2), 158-161. Available from: https://doi.org/10.1007/s004360050527
Decleer, M., Jovanovic, J., Vakula, A., Udovicki, B., Agoua, R.-S.E.K., Madder, A. et al. (2018) Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus cereus cereulide in CaCO2 and HepG2 cells. Toxins, 10(7), 266. Available from: https://doi.org/10.3390/toxins10070266
Dhaouadi, S., Mougou, A.H. & Rhouma, A. (2020) The plant pathogen Rhodococcus fascians. History, disease symptomatology, host range, pathogenesis and plant-pathogen interaction. Annals of Applied Biology, 177(1), 4-15. Available from: https://doi.org/10.1111/aab.12600
Dietrich, R., Fella, C., Strich, S. & Märtlbauer, E. (1999) Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Applied and Environmental Microbiology, 65(10), 4470-4474. Available from: https://doi.org/10.1128/AEM.65.10.4470-4474.1999
Dietrich, R., Jessberger, N., Ehling-Schulz, M., Märtlbauer, E. & Granum, P.E. (2021) The food poisoning toxins of Bacillus cereus. Toxins, 13(2), 98. Available from: https://doi.org/10.3390/toxins13020098
Dommel, M.K., Frenzel, E., Strasser, B., Blöchinger, C., Scherer, S. & Ehling-Schulz, M. (2010) Identification of the main promoter directing cereulide biosynthesis in emetic bacillus cereus and its application for real-time monitoring of ees gene expression in foods. Applied and Environmental Microbiology, 76(4), 1232-1240. Available from: https://doi.org/10.1128/AEM.02317-09
D'Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S. & Kost, C. (2018) Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 35(5), 455-488. Available from: https://doi.org/10.1039/c8np00009c
Dutta, S., Rani, T.S. & Podile, A.R. (2013) Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One, 8(10), e78369. Available from: https://doi.org/10.1371/journal.pone.0078369
Ehling-Schulz, M., Knutsson, R. & Scherer, S. (2011) Genomes of food-and water-borne pathogens. Washington: ASM Press, pp. 147-164.
Ehling-Schulz, M., Frenzel, E. & Gohar, M. (2015) Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 6, 704. Available from: https://doi.org/10.3389/fmicb.2015.00704
Ehling-Schulz, M., Fricker, M., Grallert, H., Rieck, P., Wagner, M. & Scherer, S. (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiology, 6, 1-11. Available from: https://doi.org/10.1186/1471-2180-6-20
Ehling-Schulz, M., Lereclus, D. & Koehler, T.M. (2019) The bacillus cereus group: bacillus species with pathogenic potential. Gram-Positive Pathogens, 2, 875-902. Available from: https://doi.org/10.1128/9781683670131.ch55
Ehling-Schulz, M., Svensson, B., Guinebretiere, M.H., Lindbäck, T., Andersson, M., Schulz, A. et al. (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology, 151(1), 183-197. Available from: https://doi.org/10.1099/mic.0.27607-0
Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Märtlbauer, E. et al. (2005) Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Applied and Environmental Microbiology, 71(1), 105-113. Available from: https://doi.org/10.1128/AEM.71.1.105-113.2005
Ekman, J.V., Kruglov, A., Andersson, M.A., Mikkola, R., Raulio, M. & Salkinoja-Salonen, M. (2012) Cereulide produced by Bacillus cereus increases the fitness of the producer organism in low-potassium environments. Microbiology, 158(4), 1106-1116. Available from: https://doi.org/10.1099/mic.0.053520-0
Feinberg, L., Jorgensen, J., Haselton, A., Pitt, A., Rudner, R. & Margulis, L. (1999) Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density. Symbiosis, 27(2), 109-123.
Francis, K.P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M.J., Xiao, G. et al. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infection and Immunity, 69(5), 3350-3358. Available from: https://doi.org/10.1128/IAI.69.5.3350-3358.2001
Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S. & Ehling-Schulz, M. (2012) CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 85(1), 67-88. Available from: https://doi.org/10.1111/j.1365-2958.2012.08090.x
Gonzalez, D. & Mavridou, D.A.I. (2019) Making the best of aggression: The many dimensions of bacterial toxin regulation. Trends in Microbiology, 27(11), 897-905. Available from: https://doi.org/10.1016/j.tim.2019.05.009
Granato, E.T., Meiller-Legrand, T.A. & Foster, K.R. (2019) The evolution and ecology of bacterial warfare. Current Biology, 29(11), R521-R537. Available from: https://doi.org/10.1016/j.cub.2019.04.024
Guinebretière, M.H., Thompson, F.L., Sorokin, A., Normand, P., Dawyndt, P., Ehling-Schulz, M. et al. (2008) Ecological diversification in the Bacillus cereus group. Environmental Microbiology, 10(4), 851-865. Available from: https://doi.org/10.1111/j.1462-2920.2007.01495.x
Halverson, L.J., Clayton, M.K. & Handelsman, J. (1993) Variable stability of antibiotic-resistance markers in Bacillus cereus UW85 in the soybean rhizosphere in the field. Molecular Ecology, 2(2), 65-78. Available from: https://doi.org/10.1111/j.1365-294X.1993.tb00001.x
Harvey, W.R. & Nedergaard, S. (1964) Sodium-independent active transport of potassium in the isolated midgut of the Cecropia silkworm. Proceedings of the National Academy of Sciences, 51(5), 757-765. Available from: https://doi.org/10.1073/pnas.51.5.757
Hoornstra, D., Andersson, M.A., Teplova, V.V., Mikkola, R., Uotila, L.M., Andersson, L.C. et al. (2013) Potato crop as a source of emetic bacillus cereus and cereulide-induced mammalian cell toxicity. Applied and Environmental Microbiology, 79(12), 3534-3543. Available from: https://doi.org/10.1128/AEM.00201-13
Hort, M., Bertsche, U., Nozinovic, S., Dietrich, A., Schrötter, A.S., Mildenberger, L. et al. (2021) The role of β-glycosylated wall teichoic acids in the reduction of vancomycin susceptibility in Vancomycin-intermediate Staphylococcus aureus. Microbiology Spectrum, 9(2), e0052821. Available from: https://doi.org/10.1128/Spectrum.00528-21
Hoton, F.M., Fornelos, N., N'Guessan, E., Hu, X., Swiecicka, I., Dierick, K. et al. (2009) Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environmental Microbiology Reports, 1(3), 177-183. Available from: https://doi.org/10.1111/j.1758-2229.2009.00028.x
Ichikawa, K., Gakumazawa, M., Inaba, A., Shiga, K., Takeshita, S., Mori, M. et al. (2010) Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain and Development, 32(8), 688-690. Available from: https://doi.org/10.1016/j.braindev.2009.09.004
Ilka, S., Michael, S., Manoj, G., Rainer, W., Hubert, H. & Dieter, S. (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proceedings of the National Academy of Sciences, 108(5), 1955-1960. Available from: https://doi.org/10.1073/pnas.1008441108
Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V. et al. (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423(6935), 87-91. Available from: https://doi.org/10.1038/nature01582
Jääskeläinen, E.L., Teplova, V., Andersson, M.A., Andersson, L.C., Tammela, P., Andersson, M.C. et al. (2003) In vitro assay for human toxicity of cereulide, the emetic mitochondrial toxin produced by food poisoning Bacillus cereus. Toxicology In Vitro, 17(5), 737-744. Available from: https://doi.org/10.1016/S0887-2333(03)00096-1
Jensen, G.B., Hansen, B.M., Eilenberg, J. & Mahillon, J. (2003) The hidden lifestyles of Bacillus cereus and relatives. Environmental Microbiology, 5(8), 631-640. Available from: https://doi.org/10.1046/j.1462-2920.2003.00461.x
Joachim, A., Daugschies, A., Christensen, C.M., Bjørn, H. & Nansen, P. (1997) Use of random amplified polymorphic DNA-polymerase chain reaction for the definition of genetic markers for species and strains of porcine Oesophagostomum. Parasitology Research, 83(7), 646-654. Available from: https://doi.org/10.1007/s004360050313
Joyce, S.A. & Gahan, C.G.M. (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology, 156(11), 3456-3468. Available from: https://doi.org/10.1099/mic.0.040782-0
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. (2016) The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation Alpine grasslands. Frontiers in Ecology and Evolution, 4. Available from: https://doi.org/10.3389/fevo.2016.00084
Kleer, J. & Hildebrandt, G. (2002) Bedeutung der Predictive Microbiology zur Risikominimierung bei der Lebensmittelherstellung. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 45(6), 474-483. Available from: https://doi.org/10.1007/s00103-002-0422-3
Kot, A.M., Błażejak, S., Kurcz, A., Bryś, J., Gientka, I., Bzducha-Wróbel, A. et al. (2017) Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology, 27, 25-31. Available from: https://doi.org/10.1016/j.ejbt.2017.01.007
Ladeuze, S., Lentz, N., Delbrassinne, L., Hu, X. & Mahillon, J. (2011) Antifungal activity displayed by cereulide, the emetic toxin produced by Bacillus cereus. Applied and Environmental Microbiology, 77(7), 2555-2558. Available from: https://doi.org/10.1128/AEM.02519-10
Lambert, P.A. (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. Journal of Applied Microbiology, 92(s1), 46S-54S. Available from: https://doi.org/10.1046/j.1365-2672.92.5s1.7.x
Lee, J.C., Lee, E.J., Lee, J.H., Jun, S.H., Choi, C.W., Kim, S.I. et al. (2012) Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response. FEMS Microbiology Letters, 331(1), 17-24. Available from: https://doi.org/10.1111/j.1574-6968.2012.02549.x
Leigh, R.A. & Wyn Jones, R.G. (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 97(1), 1-13. Available from: https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W. et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806-809. Available from: https://doi.org/10.1038/nature04983
Li, J., Koh, J.-J., Liu, S., Lakshminarayanan, R., Verma, C.S. & Beuerman, R.W. (2017) Membrane Active antimicrobial peptides: translating mechanistic insights to design. Frontiers in Neuroscience, 11. Available from: https://doi.org/10.3389/fnins.2017.00073
Li, X., Zhang, Y., Zhou, L., Gao, T., Zhao, Y., Liu, S. et al. (2022) Bacillus cereus (EG-Q3) in the gut of Ectropis grisescens contributes to host response to starvation conditions. Frontiers in Microbiology, 13. Available from: https://doi.org/10.3389/fmicb.2022.785415
Liebeke, M., Brözel, V.S., Hecker, M. & Lalk, M. (2009) Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Applied Microbiology and Biotechnology, 83(1), 161-173. Available from: https://doi.org/10.1007/s00253-009-1965-0
Lücking, G., Dommel, M.K., Scherer, S., Fouot, A. & Ehling-Schulz, M. (2009) Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology, 155(3), 922-931. Available from: https://doi.org/10.1099/mic.0.024125-0
Luxananil, P., Atomi, H., Panyim, S. & Imanaka, T. (2001) Isolation of bacterial strains colonizable in mosquito larval guts as novel host cells for mosquito control. Journal of Bioscience and Bioengineering, 92(4), 342-345. Available from: https://doi.org/10.1016/S1389-1723(01)80237-1
Maan, H., Itkin, M., Malitsky, S., Friedman, J. & Kolodkin-Gal, I. (2022) Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nature Communications, 13(1), 431. Available from: https://doi.org/10.1038/s41467-021-27904-2
Maathuis, F.J.M. (2009) Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250-258. Available from: https://doi.org/10.1016/j.pbi.2009.04.003
Mahler, H., Pasi, A., Kramer, J.M., Schulte, P., Scoging, A.C., Bär, W. et al. (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New England Journal of Medicine, 336(16), 1142-1148. Available from: https://doi.org/10.1056/NEJM199704173361604
Majed, R., Faille, C., Kallassy, M. & Gohar, M. (2016) Bacillus cereus biofilms-same, only different. Frontiers in Microbiology, 7(JUL), 1-16. Available from: https://doi.org/10.3389/fmicb.2016.01054
Manktelow, C.J., White, H., Crickmore, N. & Raymond, B. (2021) Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiology Ecology, 97(1), fiaa228. Available from: https://doi.org/10.1093/femsec/fiaa228
Margulis, L., Jorgensen, J.Z., Dolan, S., Kolchinsky, R., Rainey, F.A. & Lo, S.C. (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proceedings of the National Academy of Sciences, 95(3), 1236-1241. Available from: https://doi.org/10.1073/pnas.95.3.1236
Mayrhofer, N., Velicer, G.J., Schaal, K.A. & Vasse, M. (2021) Behavioral interactions between bacterivorous nematodes and predatory bacteria in a synthetic community. Microorganisms, 9(7), 1362. Available from: https://doi.org/10.3390/microorganisms9071362
Messelhäusser, U., Frenzel, E., Blöchinger, C., Zucker, R., Kämpf, P. & Ehling-Schulz, M. (2014) Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). BioMed Research International, 2014, 1-9. Available from: https://doi.org/10.1155/2014/465603
Mikkola, R., Saris, N.E.L., Grigoriev, P.A., Andersson, M.A. & Salkinoja-Salonen, M.S. (1999) Ionophoretic properties and mitochondrial effects of cereulide. The emetic toxin of B. cereus. European Journal of Biochemistry, 263(1), 112-117. Available from: https://doi.org/10.1046/j.1432-1327.1999.00476.x
Mollier, P., Lagnel, J., Fournet, B., AÏoun, A., & Riba, G. (1994) A glycoprotein highly toxic for Galleria mellonella larvae secreted by the entomopathogenic fungus Beauveria sulfurescens. Journal of Invertebrate Pathology, 64(3), 200-207. Available from: https://doi.org/10.1016/S0022-2011(94)90175-9
Novick, R. (1967) Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology, 33(1), 155-166. Available from: https://doi.org/10.1016/0042-6822(67)90105-5
Okinaka, R.T. & Keim, P. (2016) The phylogeny of Bacillus cereus sensu lato. Microbiology Spectrum, 4(1), 4.1.08. Available from: https://doi.org/10.1128/microbiolspec.TBS-0012-2012
Ondrovics, M., Silbermayr, K., Mitreva, M., Young, N.D., Razzazi-Fazeli, E., Gasser, R.B. et al. (2013) Proteomic analysis of Oesophagostomum dentatum (Nematoda) during larval transition, and the effects of hydrolase inhibitors on development. PLoS One, 8(5), e63955.
Palmer, B.F. & Clegg, D.J. (2016) Physiology and pathophysiology of potassium homeostasis. Advances in Physiology Education, 40(4), 480-490. Available from: https://doi.org/10.1152/advan.00121.2016
Pappas, P.G., Lionakis, M.S., Arendrup, M.C., Ostrosky-Zeichner, L. & Kullberg, B.J. (2018) Invasive candidiasis. Nature Reviews Disease Primers, 4(May), 1-20. Available from: https://doi.org/10.1038/nrdp.2018.26
Peterson, E. & Kaur, P. (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928. Available from: https://doi.org/10.3389/fmicb.2018.02928
Pósfay-Barbe, K.M., Schrenzel, J., Frey, J., Studer, R., Korff, C., Belli, D.C. et al. (2008) Food poisoning as a cause of acute liver failure. The Pediatric Infectious Disease Journal, 27(9), 846-847.
Priest, F.G., Barker, M., Baillie, L.W.J., Holmes, E.C. & Maiden, M.C.J. (2004) Population structure and evolution of the. Journal of Bacteriology, 186(23), 7959-7970. Available from: https://doi.org/10.1128/JB.186.23.7959
Prosser, J.I. & Nicol, G.W. (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology, 20(11), 523-531. Available from: https://doi.org/10.1016/j.tim.2012.08.001
Ratcliffe, N.A. & Walters, J.B. (1983) Studies on the in vivo cellular reactions of insects: clearance of pathogenic and non-pathogenic bacteria in Galleria mellonella larvae. Journal of Insect Physiology, 29(5), 407-415. Available from: https://doi.org/10.1016/0022-1910(83)90068-9
Rajkovic, A., Uyttendaele, M., Vermeulen, A., Andjelkovic, M., Fitz-James, I., In ‘t Veld, P. et al. (2008) Heat resistance of Bacillus cereus emetic toxin, cereulide. Letters in Applied Microbiology, 46, 536-541. Available from: https://doi.org/10.1111/j.1472-765X.2008.02350.x
Rattray, F.P. & Fox, P.F. (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. Journal of Dairy Science, 82(5), 891-909. Available from: https://doi.org/10.3168/jds.S0022-0302(99)75308-7
Raymond, B., Elliot, S.L. & Ellis, R.J. (2008) Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Journal of Invertebrate Pathology, 98(3), 307-313. Available from: https://doi.org/10.1016/j.jip.2008.01.005
Raymond, B., Wyres, K.L., Sheppard, S.K., Ellis, R.J. & Bonsall, M.B. (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus Group in the Field. PLoS Pathogens, 6(5), e1000905. Available from: https://doi.org/10.1371/journal.ppat.1000905
Reyes, C., Hodgskiss, L.H., Kerou, M., Pribasnig, T., Abby, S.S., Bayer, B. et al. (2020) Genome wide transcriptomic analysis of the soil ammonia oxidizing archaeon Nitrososphaera viennensis upon exposure to copper limitation. The ISME Journal, 14(11), 2659-2674. Available from: https://doi.org/10.1038/s41396-020-0715-2
Riley, M.A. (1998) Molecular mechanisms of bacteriocin evolution. Annual Review of Genetics, 32(1), 255-278. Available from: https://doi.org/10.1146/annurev.genet.32.1.255
Rønn, R., McCaig, A.E., Griffiths, B.S. & Prosser, J.I. (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Applied and Environmental Microbiology, 68(12), 6094-6105. Available from: https://doi.org/10.1128/AEM.68.12.6094-6105.2002
Rouzeau-Szynalski, K., Stollewerk, K., Messelhäusser, U. & Ehling-Schulz, M. (2020) Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiology, 85, 103279. Available from: https://doi.org/10.1016/j.fm.2019.103279
RStudio Team. (2020). RStudio: integrated development environment for R. http://www.rstudio.com/
Sahalan, A.Z. & Dixon, R.A. (2008) Role of the cell envelope in the antibacterial activities of polymyxin B and polymyxin B nonapeptide against Escherichia coli. International Journal of Antimicrobial Agents, 31(3), 224-227. Available from: https://doi.org/10.1016/j.ijantimicag.2007.10.005
Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, A.J. et al. (1983) Epidemic listeriosis--evidence for transmission by food. The New England Journal of Medicine, 308(4), 203-206. Available from: https://doi.org/10.1056/NEJM198301273080407
Schreiber, N., Hackl, G., Reisinger, A.C., Zollner-Schwetz, I., Eller, K., Schlagenhaufen, C. et al. (2021) Acute liver failure after ingestion of fried Rice balls: a case series of Bacillus cereus food poisonings. Toxins, 14(1), 12. Available from: https://doi.org/10.3390/toxins14010012
Sen, D., Paul, K., Saha, C., Mukherjee, G., Nag, M., Ghosh, S. et al. (2019) A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1-a comparative genomics viewpoint. DNA Research, 26(2), 131-146. Available from: https://doi.org/10.1093/dnares/dsy044
Shang, H., Chen, J., Handelsman, J. & Goodman, R.M. (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Current Microbiology, 38(4), 199-204. Available from: https://doi.org/10.1007/PL00006787
Sprouffske, K. & Wagner, A. (2016) Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics, 17, 172. Available from: https://doi.org/10.1186/s12859-016-1016-7
Süssmuth, R.D. & Mainz, A. (2017) Nonribosomal peptide synthesis-principles and prospects. Angewandte Chemie International Edition, 56(14), 3770-3821. Available from: https://doi.org/10.1002/anie.201609079
Swiecicka, I. & Mahillon, J. (2006) Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiology Ecology, 56(1), 132-140. Available from: https://doi.org/10.1111/j.1574-6941.2006.00063.x
Tempelaars, M.H., Rodrigues, S. & Abee, T. (2011) Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Applied and Environmental Microbiology, 77(8), 2755-2762. Available from: https://doi.org/10.1128/AEM.02671-10
Teplova, V.V., Mikkola, R., Tonshin, A.A., Saris, N.-E.L. & Salkinoja-Salonen, M.S. (2006) The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicology and Applied Pharmacology, 210(1), 39-46. Available from: https://doi.org/10.1016/j.taap.2005.06.012
Thompson, C.L., Vier, R., Mikaelyan, A., Wienemann, T. & Brune, A. (2012) ‘Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environmental Microbiology, 14(6), 1454-1465. Available from: https://doi.org/10.1111/j.1462-2920.2012.02731.x
Tourasse, N.J., Jolley, K.A., Kolstø, A.-B. & Økstad, O.A. (2023) Core genome multilocus sequence typing scheme for Bacillus cereus group bacteria. Research in Microbiology, 104050. Available from: https://doi.org/10.1016/j.resmic.2023.104050
Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T. et al. (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108(20), 8420-8425. Available from: https://doi.org/10.1073/pnas.1013488108
Tschiedel, E., Rath, P.-M., Steinmann, J., Becker, H., Dietrich, R., Paul, A. et al. (2015) Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatric Transplantation, 19(1), E11-E14. Available from: https://doi.org/10.1111/petr.12378
Turnbull, P.C., Kramer, J.M., Jørgensen, K., Gilbert, R.J. & Melling, J. (1979) Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. The American Journal of Clinical Nutrition, 32(1), 219-228. Available from: https://doi.org/10.1093/ajcn/32.1.219
Ueda, S. & Kuwabara, Y. (1988) Ecological study of Bacillus cereus in rice crop processing. II. Contamination of B. cereus in unhulled, unpolished and polished rice during processing of rice. Journal of Antibacterial and Antifungal Agents, Japan, 16(3), 115-120.
Vaara, M. (1992) Agents that increase the permeability of the outer membrane. Microbiological Reviews, 56(3), 395-411. Available from: https://doi.org/10.1128/mr.56.3.395-411.1992
van Leeuwen, E., O'Neill, S., Matthews, A. & Raymond, B. (2015) Making pathogens sociable: The emergence of high relatedness through limited host invasibility. The ISME Journal, 9(10), 2315-2323. Available from: https://doi.org/10.1038/ismej.2015.111
Vandeweyer, D., Lievens, B. & Van Campenhout, L. (2020) Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nature Food, 1(8), 511-516. Available from: https://doi.org/10.1038/s43016-020-0120-z
Vangoitsenhoven, R., Rondas, D., Crèvecoeur, I., D'Hertog, W., Baatsen, P., Masini, M. et al. (2014) Foodborne cereulide causes beta-cell dysfunction and apoptosis. PLoS One, 9(8). Available from: https://doi.org/10.1371/journal.pone.0104866
Walker, D.J., Leigh, R.A. & Miller, A.J. (1996) Potassium homeostasis in vacuolate plant cells. Proceedings of the National Academy of Sciences of the United States of America, 93(19), 10510-10514. Available from: https://doi.org/10.1073/pnas.93.19.10510
Wang, S., Zheng, Y., Gu, C., He, C., Yang, M., Zhang, X. et al. (2017) Bacillus cereus AR156 activates defense responses to Pseudomonas syringae pv. Tomato in Arabidopsis thaliana similarly to flg22. Molecular Plant-Microbe Interactions®, 31(3), 311-322. Available from: https://doi.org/10.1094/MPMI-10-17-0240-R
Wang, Y. & Wu, W.-H. (2010) Plant sensing and signaling in response to K+-deficiency. Molecular Plant, 3(2), 280-287. Available from: https://doi.org/10.1093/mp/ssq006
White, H., Vos, M., Sheppard, S.K., Pascoe, B. & Raymond, B. (2022) Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Molecular Ecology, 31(13), 3584-3597. Available from: https://doi.org/10.1111/mec.16490
Wongwigkarn, J., Saemi, K., Seeweera, W., Konunta, K., Fakthong, W., Tasanapak, K. et al. (2020) Detection and identification of naturally-occurring yeasts in homemade fermented rice water. Ecology, Environment and Conservation, 26(2), 871-878.
Xu, F., Liao, H., Zhang, Y., Yao, M., Liu, J., Sun, L. et al. (2021) Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. ISME Journal, 16, 801-811. Available from: https://doi.org/10.1038/s41396-021-01133-3
Zhang, S., Mukherji, R., Chowdhury, S., Reimer, L. & Stallforth, P. (2021) Lipopeptide-mediated bacterial interaction enables cooperative predator defense. Proceedings of the National Academy of Sciences of the United States of America, 118(6), 1-6. Available from: https://doi.org/10.1073/pnas.2013759118