Confocal Endomicroscopy Monitoring of Tumor Formation.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 26 6 2023
pubmed: 25 6 2023
entrez: 24 6 2023
Statut: ppublish

Résumé

The utilization of preclinical murine models of colorectal cancer (CRC) has been essential to our understanding of the onset and progression of disease. As the genetic complexity of these models evolves to better recapitulate emerging CRC subtypes, our ability to utilize these models to discover and validate novel therapeutic targets will also improve. This will be aided, in part, by the development of live animal imaging techniques, including confocal endomicroscopy for mice. Here in this chapter, we describe the combined use of standard white light endoscopy and confocal endomicroscopy thereby providing a method to rapidly image and assess changes in the colon of an individual live mouse in real time. These methods permit the generation of high-resolution cross-sectional images of the tumor microenvironment for immediate visualization of cells of interest, avoiding the need for euthanasia and tissue collection across multiple cohorts of mice.

Identifiants

pubmed: 37355552
doi: 10.1007/978-1-0716-3331-1_20
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

257-262

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Brenner H, Altenhofen L, Stock C et al (2014) Incidence of colorectal adenomas: birth cohort analysis among 4.3 million participants of screening colonoscopy. Cancer Epidemiol Biomark Prev 23:1920–1927
doi: 10.1158/1055-9965.EPI-14-0367
Waldner MJ, Wirtz S, Neufert C et al (2011) Confocal laser endomicroscopy and narrow-band imaging-aided endoscopy for in vivo imaging of colitis and colon cancer in mice. Nat Protoc 6:1471–1481
doi: 10.1038/nprot.2011.377 pubmed: 21886109
Becker C, Fantini MC, Neurath MF (2006) High resolution colonoscopy in live mice. Nat Protoc 1:2900–2904
doi: 10.1038/nprot.2006.446 pubmed: 17406549
Bruckner M, Lenz P, Nowacki TM et al (2014) Murine endoscopy for in vivo multimodal imaging of carcinogenesis and assessment of intestinal wound healing and inflammation. J Vis Exp 90:e51875
Putoczki TL, Thiem S, Loving A et al (2013) Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24:257–271
doi: 10.1016/j.ccr.2013.06.017 pubmed: 23948300
Nguyen PM, Dagley LF, Preaudet A et al (2020) Loss of Bcl-G, a Bcl-2 family member, augments the development of inflammation-associated colorectal cancer. Cell Death Differ 27:742–757
doi: 10.1038/s41418-019-0383-9 pubmed: 31296963
Atreya R, Neumann H, Neufert C et al (2014) In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 20:313–318
doi: 10.1038/nm.3462 pubmed: 24562382 pmcid: 4479137
Mielke L, Preaudet A, Belz G et al (2015) Confocal laser endomicroscopy to monitor the colonic mucosa of mice. J Immunol Methods 421:81–88
doi: 10.1016/j.jim.2015.04.012 pubmed: 25960174 pmcid: 5803490
Varol C, Vallon-Eberhard A, Elinav E et al (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31:502–512
doi: 10.1016/j.immuni.2009.06.025 pubmed: 19733097
Oh G, Yoo SW, Jung Y et al (2014) Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy. Biomed Opt Express 5:1677–1689
doi: 10.1364/BOE.5.001677 pubmed: 24877024 pmcid: 4026906
Hinoi T, Akyol A, Theisen BK et al (2007) Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67:9721–9730
doi: 10.1158/0008-5472.CAN-07-2735 pubmed: 17942902
Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4
doi: 10.1186/1471-213X-1-4 pubmed: 11299042 pmcid: 31338

Auteurs

Adele Preaudet (A)

Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.

Ka Yee Fung (KY)

Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.

Tracy L Putoczki (TL)

Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Putoczki.t@wehi.edu.au.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. Putoczki.t@wehi.edu.au.
Department of Surgery, The University of Melbourne, Parkville, VIC, Australia. Putoczki.t@wehi.edu.au.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH