Quantitative Immunofluorescence to Study Phagosome Maturation and Resolution.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 28 6 2023
pubmed: 27 6 2023
entrez: 26 6 2023
Statut: ppublish

Résumé

Cells such as macrophages and neutrophils can internalize a diverse set of particulate matter, illustrated by bacteria and apoptotic bodies through the process of phagocytosis. These particles are sequestered into phagosomes, which then fuse with early and late endosomes and ultimately with lysosomes to mature into phagolysosomes, through a process known as phagosome maturation. Ultimately, after particle degradation, phagosomes then fragment to reform lysosomes through phagosome resolution. As phagosomes change, they acquire and divest proteins that are associated with the various stages of phagosome maturation and resolution. These changes can be assessed at the single-phagosome level by using immunofluorescence methods. Typically, we use indirect immunofluorescence methods that rely on primary antibodies against specific molecular markers that track phagosome maturation. Commonly, progression of phagosomes into phagolysosomes can be determined by staining cells for Lysosomal-Associated Membrane Protein I (LAMP1) and measuring the fluorescence intensity of LAMP1 around each phagosome by microscopy or flow cytometry. However, this method can be used to detect any molecular marker for which there are compatible antibodies for immunofluorescence.

Identifiants

pubmed: 37365465
doi: 10.1007/978-1-0716-3338-0_9
doi:

Substances chimiques

Lysosomal-Associated Membrane Protein 1 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

121-137

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Levin R, Grinstein S, Canton J (2016) The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 273:156–179. https://doi.org/10.1111/imr.12439
doi: 10.1111/imr.12439 pubmed: 27558334
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ (2021) Phagosome maturation in macrophages: eat, digest, adapt, and repeat. Adv Biol Regul 82:100832. https://doi.org/10.1016/j.jbior.2021.100832
doi: 10.1016/j.jbior.2021.100832 pubmed: 34717137
Uribe-Querol E, Rosales C (2020) Phagocytosis: our current understanding of a universal biological process. Front Immunol 11:1066. https://doi.org/10.3389/fimmu.2020.01066
doi: 10.3389/fimmu.2020.01066 pubmed: 32582172 pmcid: 7280488
Lancaster CE, Fountain A, Dayam RM, Somerville E, Sheth J, Jacobelli V, Somerville A, Terebiznik MR, Botelho RJ (2021) Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J Cell Biol 220:e202005072. https://doi.org/10.1083/jcb.202005072
doi: 10.1083/jcb.202005072 pubmed: 34180943 pmcid: 8241537
Levin-Konigsberg R, Montaño-Rendón F, Keren-Kaplan T, Li R, Ego B, Mylvaganam S, DiCiccio JE, Trimble WS, Bassik MC, Bonifacino JS, Fairn GD, Grinstein S (2019) Phagolysosome resolution requires contacts with the endoplasmic reticulum and phosphatidylinositol-4-phosphate signalling. Nat Cell Biol 21:1234–1247. https://doi.org/10.1038/s41556-019-0394-2
doi: 10.1038/s41556-019-0394-2 pubmed: 31570833 pmcid: 8340083
Levin-Konigsberg R, Mantegazza AR (2021) A guide to measuring phagosomal dynamics. FEBS J 288:1412–1433. https://doi.org/10.1111/febs.15506
doi: 10.1111/febs.15506 pubmed: 32757358
Levin R, Grinstein S, Schlam D (2015) Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta 1851:805–823. https://doi.org/10.1016/j.bbalip.2014.09.005
doi: 10.1016/j.bbalip.2014.09.005 pubmed: 25238964
Scott CC, Dobson W, Botelho RJ, Coady-Osberg N, Chavrier P, Knecht DA, Heath C, Stahl P, Grinstein S (2005) Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 169:139–149. https://doi.org/10.1083/jcb.200412162
doi: 10.1083/jcb.200412162 pubmed: 15809313 pmcid: 2171893
Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1367. https://doi.org/10.1083/jcb.151.7.1353
doi: 10.1083/jcb.151.7.1353 pubmed: 11134066 pmcid: 2150667
Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25. https://doi.org/10.1083/jcb.200107069
doi: 10.1083/jcb.200107069 pubmed: 11581283 pmcid: 2150784
Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644. https://doi.org/10.1083/jcb.200106049
doi: 10.1083/jcb.200106049 pubmed: 11489920 pmcid: 2196432
Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S (2004) Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol Cell Biol 24:4593–4604. https://doi.org/10.1128/MCB.24.10.4593-4604.2004
doi: 10.1128/MCB.24.10.4593-4604.2004 pubmed: 15121875 pmcid: 400451
Kim GHE, Dayam RM, Prashar A, Terebiznik M, Botelho RJ (2014) PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic 15:1143–1163. https://doi.org/10.1111/tra.12199
doi: 10.1111/tra.12199 pubmed: 25041080
Sun-Wada G-H, Tabata H, Kawamura N, Aoyama M, Wada Y (2009) Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J Cell Sci 122:2504–2513. https://doi.org/10.1242/jcs.050443
doi: 10.1242/jcs.050443 pubmed: 19549681
Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23:6494–6506. https://doi.org/10.1128/MCB.23.18.6494-6506.2003
doi: 10.1128/MCB.23.18.6494-6506.2003 pubmed: 12944476 pmcid: 193691
Pitt A, Mayorga LS, Stahl PD, Schwartz AL (1992) Alterations in the protein composition of maturing phagosomes. J Clin Invest 90:1978–1983. https://doi.org/10.1172/JCI116077
doi: 10.1172/JCI116077 pubmed: 1430221 pmcid: 443261
Nguyen JA, Yates RM (2021) Better together: current insights into phagosome-lysosome fusion. Front Immunol 12:636078. https://doi.org/10.3389/fimmu.2021.636078
doi: 10.3389/fimmu.2021.636078 pubmed: 33717183 pmcid: 7946854
Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V (2004) Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 15:751–760. https://doi.org/10.1091/mbc.e03-05-0307
doi: 10.1091/mbc.e03-05-0307 pubmed: 14617817 pmcid: 329390
Chua J, Deretic V (2004) Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J Biol Chem 279:36982–36992. https://doi.org/10.1074/jbc.M405082200
doi: 10.1074/jbc.M405082200 pubmed: 15210698
Sachdeva K, Goel M, Sudhakar M, Mehta M, Raju R, Raman K, Singh A, Sundaramurthy V (2020) Mycobacterium tuberculosis (Mtb) lipid mediated lysosomal rewiring in infected macrophages modulates intracellular Mtb trafficking and survival. J Biol Chem 295:9192–9210. https://doi.org/10.1074/jbc.RA120.012809
doi: 10.1074/jbc.RA120.012809 pubmed: 32424041 pmcid: 7335774
Gutierrez MG (2013) Functional role(s) of phagosomal Rab GTPases. Small GTPases 4:148–158. https://doi.org/10.4161/sgtp.25604
doi: 10.4161/sgtp.25604 pubmed: 24088602 pmcid: 3976971
Santucci P, Aylan B, Botella L, Bernard EM, Bussi C, Pellegrino E, Athanasiadi N, Gutierrez MG (2022) Visualizing pyrazinamide action by live single-cell imaging of phagosome acidification and mycobacterium tuberculosis pH homeostasis. mBio 13:e0011722. https://doi.org/10.1128/mbio.00117-22
doi: 10.1128/mbio.00117-22 pubmed: 35323041
Aoki V, Sousa JX, Fukumori LMI, Périgo AM, Freitas EL, Oliveira ZNP (2010) Direct and indirect immunofluorescence. An Bras Dermatol 85:490–500. https://doi.org/10.1590/s0365-05962010000400010
doi: 10.1590/s0365-05962010000400010 pubmed: 20944909
St Croix CM, Shand SH, Watkins SC (2005) Confocal microscopy: comparisons, applications, and problems. BioTechniques 39:S2–S5. https://doi.org/10.2144/000112089
doi: 10.2144/000112089 pubmed: 20158500
Brown M, Wittwer C (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem 46:1221–1229
doi: 10.1093/clinchem/46.8.1221 pubmed: 10926916

Auteurs

Mélanie Mansat (M)

Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada.

Roya M Dayam (RM)

Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada.

Roberto J Botelho (RJ)

Department of Chemistry and Biology and the Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, ON, Canada. rbotelho@torontomu.ca.

Articles similaires

Endometriosis Female Humans Animals Mice
Dendritic Cells Animals Cross-Priming Mice Mice, Inbred C57BL
Humans Stomach Neoplasms Macrophages Tumor Microenvironment Disease Progression
NLR Family, Pyrin Domain-Containing 3 Protein Autophagy Inflammasomes Interleukin-1beta Animals

Classifications MeSH