Serum sPD-L1 levels are elevated in patients with viral diseases, bacterial sepsis or in patients with impaired renal function compared to healthy blood donors.


Journal

Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306

Informations de publication

Date de publication:
27 11 2023
Historique:
received: 03 03 2023
accepted: 16 06 2023
medline: 26 10 2023
pubmed: 4 7 2023
entrez: 4 7 2023
Statut: epublish

Résumé

Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.

Identifiants

pubmed: 37401452
pii: cclm-2023-0232
doi: 10.1515/cclm-2023-0232
doi:

Substances chimiques

B7-H1 Antigen 0
RNA, Viral 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2248-2255

Informations de copyright

© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Références

Keir, ME, Freeman, GJ, Sharpe, AH. PD-1 regulates self-reactive CD8 + T cell responses to antigen in lymph nodes and tissues. J Immunol 2007;179:5064–70. https://doi.org/10.4049/jimmunol.179.8.5064 .
doi: 10.4049/jimmunol.179.8.5064
Ajona, D, Ortiz-Espinosa, S, Pio, R. Complement anaphylatoxins C3a and C5a: emerging roles in cancer progression and treatment. Semin Cell Dev Biol 2019;85:153–63. https://doi.org/10.1016/j.semcdb.2017.11.023 .
doi: 10.1016/j.semcdb.2017.11.023
Alsaab, HO, Sau, S, Alzhrani, R, Tatiparti, K, Bhise, K, Kashaw, SK, et al.. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017;8:561. https://doi.org/10.3389/fphar.2017.00561 .
doi: 10.3389/fphar.2017.00561
Khan, M, Zhao, Z, Arooj, S, Fu, Y, Liao, G. Soluble PD-1: predictive, prognostic, and therapeutic value for cancer immunotherapy. Front Immunol 2020;11:587460. https://doi.org/10.3389/fimmu.2020.587460 .
doi: 10.3389/fimmu.2020.587460
Shen, MJ, Xu, LJ, Yang, L, Tsai, Y, Keng, PC, Chen, Y, et al.. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 2017;8:80506–20. https://doi.org/10.18632/oncotarget.19193 .
doi: 10.18632/oncotarget.19193
Zhang, N, Zeng, Y, Du, W, Zhu, J, Shen, D, Liu, Z, et al.. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016;49:1360–8. https://doi.org/10.3892/ijo.2016.3632 .
doi: 10.3892/ijo.2016.3632
Xu, L, Chen, X, Shen, M, Yang, DR, Fang, L, Weng, G, et al.. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol 2018;12:269–86. https://doi.org/10.1002/1878-0261.12135 .
doi: 10.1002/1878-0261.12135
Wang, X, Ni, S, Chen, Q, Ma, L, Jiao, Z, Wang, C, et al.. Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10: macrophage and bladder cancer. Cell Biol Int 2017;41:177–86. https://doi.org/10.1002/cbin.10716 .
doi: 10.1002/cbin.10716
Xiong, HY, Ma, TT, Wu, BT, Lin, Y, Tu, ZG. IL-12 regulates B7-H1 expression in ovarian cancer-associated macrophages by effects on NF-κB signalling. Asian Pac J Cancer Prev 2014;15:5767–72. https://doi.org/10.7314/apjcp.2014.15.14.5767 .
doi: 10.7314/apjcp.2014.15.14.5767
Wang, WB, Yen, ML, Liu, KJ, Hsu, PJ, Lin, MH, Chen, PM, et al.. Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Rep 2015;5:392–404. https://doi.org/10.1016/j.stemcr.2015.07.013 .
doi: 10.1016/j.stemcr.2015.07.013
Carbotti, G, Barisione, G, Airoldi, I, Mezzanzanica, D, Bagnoli, M, Ferrero, S, et al.. IL-27 induces the expression of Ido and PD-L1 in human cancer cells. Oncotarget 2015;6:43267–80. https://doi.org/10.18632/oncotarget.6530 .
doi: 10.18632/oncotarget.6530
Ng, KW, Attig, J, Young, GR, Ottina, E, Papamichos, SI, Kotsianidis, I, et al.. Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. Elife 2019;8:e50256. https://doi.org/10.7554/elife.50256 .
doi: 10.7554/elife.50256
Chen, Y, Wang, Q, Shi, B, Xu, P, Hu, Z, Bai, L, et al.. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 2011;56:231–8. https://doi.org/10.1016/j.cyto.2011.06.004 .
doi: 10.1016/j.cyto.2011.06.004
He, G, Zhang, H, Zhou, J, Wang, B, Chen, Y, Kong, Y, et al.. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 2015;34:141. https://doi.org/10.1186/s13046-015-0256-0 .
doi: 10.1186/s13046-015-0256-0
Ajona, D, Ortiz-Espinosa, S, Moreno, H, Lozano, T, Pajares, MJ, Agorreta, J, et al.. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov 2017;7:694–703. https://doi.org/10.1158/2159-8290.cd-16-1184 .
doi: 10.1158/2159-8290.cd-16-1184
Ding, Y, Sun, C, Li, J, Hu, L, Li, M, Liu, J, et al.. The prognostic significance of soluble programmed death ligand 1 expression in cancers: a systematic review and meta-analysis. Scand J Immunol 2017;86:361–7. https://doi.org/10.1111/sji.12596 .
doi: 10.1111/sji.12596
Ohaegbulam, KC, Assal, A, Lazar-Molnar, E, Yao, Y, Zang, X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015;21:24–33. https://doi.org/10.1016/j.molmed.2014.10.009 .
doi: 10.1016/j.molmed.2014.10.009
Sunshine, J, Taube, JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015;23:32–8. https://doi.org/10.1016/j.coph.2015.05.011 .
doi: 10.1016/j.coph.2015.05.011
Chen, X, Fosco, D, Kline, DE, Meng, L, Nishi, S, Savage, PA, et al.. PD-1 regulates extrathymic regulatory T-cell differentiation: cellular immune response. Eur J Immunol 2014;44:2603–16. https://doi.org/10.1002/eji.201344423 .
doi: 10.1002/eji.201344423
Bailly, C, Thuru, X, Quesnel, B. Soluble programmed death ligand-1 (sPD-L1): a pool of circulating proteins implicated in health and diseases. Cancers 2021;13:3034. https://doi.org/10.3390/cancers13123034 .
doi: 10.3390/cancers13123034
Sun, S, Chen, Y, Liu, Z, Tian, R, Liu, J, Chen, E, et al.. Serum-soluble PD-L1 may be a potential diagnostic biomarker in sepsis. Scand J Immunol 2021;94:e13049. https://doi.org/10.1111/sji.13049 .
doi: 10.1111/sji.13049
Tannig, P, Peter, AS, Lapuente, D, Klessing, S, Schmidt, A, Damm, D, et al.. Genetic Co-administration of soluble PD-1 ectodomains modifies immune responses against influenza A virus induced by DNA vaccination. Vaccines 2020;8:570. https://doi.org/10.3390/vaccines8040570 .
doi: 10.3390/vaccines8040570
Valero-Pacheco, N, Arriaga-Pizano, L, Ferat-Osorio, E, Mora-Velandia, LM, Pastelin-Palacios, R, Villasís-Keever, MÁ, et al.. PD-L1 expression induced by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell response. Clin Dev Immunol 2013;2013:1–11. https://doi.org/10.1155/2013/989673 .
doi: 10.1155/2013/989673
Laksono, B, de Vries, R, McQuaid, S, Duprex, W, de Swart, R. Measles virus host invasion and pathogenesis. Viruses 2016;8:210. https://doi.org/10.3390/v8080210 .
doi: 10.3390/v8080210
Liu, M, Zhang, X, Chen, H, Wang, G, Zhang, J, Dong, P, et al.. Serum sPD-L1, upregulated in sepsis, may reflect disease severity and clinical outcomes in septic patients. Scand J Immunol 2017;85:66–72. https://doi.org/10.1111/sji.12509 .
doi: 10.1111/sji.12509
Kushlinskii, NE, Gershtein, ES, Morozov, AA, Goryacheva, IO, Filipenko, ML, Alferov, AA, et al.. Soluble ligand of the immune checkpoint receptor (sPD-L1) in blood serum of patients with renal cell carcinoma. Bull Exp Biol Med 2019;166:353–7. https://doi.org/10.1007/s10517-019-04349-8 .
doi: 10.1007/s10517-019-04349-8
Li, Y, Zhao, R, Cheng, K, Zhang, K, Wang, Y, Zhang, Y, et al.. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano 2020;14:16698–711. https://doi.org/10.1021/acsnano.0c03776 .
doi: 10.1021/acsnano.0c03776
Vanaja, SK, Russo, AJ, Behl, B, Banerjee, I, Yankova, M, Deshmukh, SD, et al.. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 2016;165:1106–19. https://doi.org/10.1016/j.cell.2016.04.015 .
doi: 10.1016/j.cell.2016.04.015
Zhang, G, Meredith, TC, Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 2013;16:779–85. https://doi.org/10.1016/j.mib.2013.09.007 .
doi: 10.1016/j.mib.2013.09.007
Haschka, D, Hoffmann, A, Weiss, G. Iron in immune cell function and host defense. Semin Cell Dev Biol 2021;115:27–36. https://doi.org/10.1016/j.semcdb.2020.12.005 .
doi: 10.1016/j.semcdb.2020.12.005
Wu, X, Xu, L, Cheng, Q, Nie, L, Zhang, S, Du, Y, et al.. Increased serum soluble programmed death ligand 1(sPD-L1) is associated with the presence of interstitial lung disease in rheumatoid arthritis: a monocentric cross-sectional study. Respir Med 2020;166:105948. https://doi.org/10.1016/j.rmed.2020.105948 .
doi: 10.1016/j.rmed.2020.105948
Lanser, L, Fuchs, D, Kurz, K, Weiss, G. Physiology and inflammation driven pathophysiology of iron homeostasis-mechanistic insights into anemia of inflammation and its treatment. Nutrients 2021;13:3732. https://doi.org/10.3390/nu13113732 .
doi: 10.3390/nu13113732

Auteurs

Lorin Loacker (L)

Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria.

Alexander Egger (A)

Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria.

Vilmos Fux (V)

Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria.

Rosa Bellmann-Weiler (R)

Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria.

Günter Weiss (G)

Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria.

Andrea Griesmacher (A)

Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria.

Gregor Hoermann (G)

MLL Munich Leukemia Laboratory, Munich, Germany.

Franz Ratzinger (F)

Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria.

Helmuth Haslacher (H)

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Hubert Schrezenmeier (H)

Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany.

Markus Anliker (M)

Central Institute for Medical and Chemical Laboratory Diagnosis, Tirol Kliniken GmbH, Innsbruck, Austria.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH