Assessment of generalised Bayesian structural equation models for continuous and binary data.

Bayesian model assessment cross-validation factor analysis scoring rules

Journal

The British journal of mathematical and statistical psychology
ISSN: 2044-8317
Titre abrégé: Br J Math Stat Psychol
Pays: England
ID NLM: 0004047

Informations de publication

Date de publication:
11 2023
Historique:
received: 01 03 2023
accepted: 17 04 2023
medline: 4 10 2023
pubmed: 4 7 2023
entrez: 4 7 2023
Statut: ppublish

Résumé

The paper proposes a novel model assessment paradigm aiming to address shortcoming of posterior predictive

Identifiants

pubmed: 37401608
doi: 10.1111/bmsp.12314
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

559-584

Informations de copyright

© 2023 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

Références

Asparouhov, T., & Muthén, B. (2021a). Advances in Bayesian model fit evaluation for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 1-14.
Asparouhov, T., & Muthén, B. (2021b). Expanding the Bayesian structural equation, multilevel and mixture models to logit, negative-binomial, and nominal variables. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 622-637.
Asparouhov, T., Muthén, B., & Morin, A. J. S. (2015). Bayesian structural equation modeling with cross-loadings and residual covariances: Comments on stromeyer et al. Journal of Management, 41(6), 1561-1577.
Bhattacharya, A., & Dunson, D. (2011). Sparse Bayesian infinite factor models. Biometrika, 98(2), 291-306.
Bollen, K. A. (1989). Structural equations with latent variables. Wiley Series in Probability and Mathematical Statistics. Wiley.
Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44(1), 108-132.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32.
Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., & West, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. Journal of the American Statistical Association, 103(484), 1438-1456.
Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85(2), 347-361.
Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., & Piatek, R. (2014). Bayesian exploratory factor analysis. Journal of Econometrics, 183(1), 31-57.
Dawid, A. P., & Musio, M. (2014). Theory and applications of proper scoring rules. METRON, 72(2), 169-183.
Dunson, D. B., Palomo, J., & Bollen, K. (2005). Bayesian structural equation modeling. SAMSI# TR2005-5.
Edwards, M. C. (2010). A Markov Chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474-497.
Erosheva, E. A., & Curtis, M. S. (2017). Dealing with reflection invariance in Bayesian factor analysis. Psychometrika, 82(2), 295-307.
Fong, E., & Holmes, C. (2020). On the marginal likelihood and cross-validation. Biometrika, 107(2), 489-496.
Frühwirth-Schnatter, S., & Lopes, H. F. (2018). Parsimonious Bayesian factor analysis when the number of factors is unknown. Unpublished Working Paper.
Garnier-Villarreal, M., & Jorgensen, T. D. (2020). Adapting fit indices for Bayesian structural equation modeling: Comparison to maximum likelihood. Psychological Methods, 25(1), 46.
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 555-497.
Geweke, J., & Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. The Review of Financial Studies, 9(2), 557-587.
Ghosh, J., & Dunson, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18(2), 306-320.
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359-378.
Heatherton, T., Kozlowski, L., Frecker, R., & Fagerstrom, K. (1991). The Fagerstrom test for nicotine dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 1119-1127.
Hoijtink, H., & van de Schoot, R. (2018). Testing small variance priors using prior-posterior predictive p values. Psychological Methods, 23(3), 561.
Jiang, Z., & Templin, J. (2019). Gibbs samplers for logistic item response models via the pólya-gamma distribution: A computationally efficient data-augmentation strategy. Psychometrika, 84(2), 358-374.
Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347-387.
Kaplan, D. (2014). Bayesian statistics for the social sciences. Guilford Publications.
Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
Krüger, F., Lerch, S., Thorarinsdottir, T., & Gneiting, T. (2021). Predictive inference based on Markov chain Monte Carlo output. International Statistical Review, 89(2), 274-301.
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1), 430-474.
Liang, X. (2020). Prior sensitivity in Bayesian structural equation modeling for sparse factor loading structures. Educational and Psychological Measurement, 80(6), 1025-1058.
Lindley, D. V. (1957). A statistical paradox. Biometrika, 44(1/2), 187-192.
Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41-67.
Lu, Z.-H., Chow, S.-M., & Loken, E. (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51(4), 519-539.
MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17(3), 340-345.
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490.
Maydeu-Olivares, A., & Joe, H. (2005). Limited and full-information estimation and goodness-of-fit testing in 2n contingency tables: A unified framework. Journal of the American Statistical Association, 6, 1009-1020.
Meng, X.-L. (1994). Posterior predictive p-values. The Annals of Statistics, 22(3), 1142-1160.
Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods. Psychometrika, 84(3), 802-829.
Merkle, E. C., & Rosseel, Y. (2015). blavaan: Bayesian structural equation models via parameter expansion. arXiv preprint arXiv:1511.05604.
Moustaki, I., & Knott, M. (2000). Weighting for item non-response in attitude scales by using latent variable models with covariates. Journal of the Royal Statistical Society, Series A, 163, 445-459.
Muthén, B., & Asparouhov, T. (2012). Bayesian Structural Equation Modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo (vol. 2, issue 11, p. 2). Chapman & Hall/CRC Press.
O'Muircheartaigh, C., & Moustaki, I. (1999). Symmetric pattern models: A latent variable approach to item non-response in attitude scales. Journal of the Royal Statistical Society, Series A, 162, 177-194.
Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics, 9(3), 523-539.
Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using pólya-gamma latent variables. Journal of the American Statistical Association, 108(504), 1339-1349.
Richardson, C. G., & Ratner, P. A. (2005). A confirmatory factor analysis of the Fagerstrom Test for Nicotine Dependence. Addictive Behaviors, 30(4), 697-709.
Rose, N., von Davier, M., & Nagengast, B. (2017). Modeling omitted and not-reached items in IRT models. Psychometrika, 82, 795-819.
Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64(1), 37-52.
Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a Bayesian approach. Journal of Educational Measurement, 42(4), 375-394.
Song, X.-Y., Lu, Z.-H., Cai, J.-H., & Ip, E. H.-S. (2013). A Bayesian modeling approach for generalized semiparametric structural equation models. Psychometrika, 78(4), 624-647.
Stromeyer, W. R., Miller, J. W., Sriramachandramurthy, R., & DeMartino, R. (2015). The prowess and pitfalls of Bayesian structural equation modeling: Important considerations for management research. Journal of Management, 41(2), 491-520.
Van De Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217-239.
Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23(2), 363.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved R̂ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2), 667-718.
Vitoratou, V., Ntzoufras, I., & Moustaki, I. (2014). Marginal likelihood estimation from the metropolis output: Tips and tricks for efficient implementation in generalized linear latent variable models. Journal of Statistical Computation and Simulation, 84(10), 2091-2105.
Yang, M., & Dunson, D. B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75(4), 675-693.

Auteurs

Konstantinos Vamvourellis (K)

Department of Statistics, London School of Economics, London, UK.

Konstantinos Kalogeropoulos (K)

Department of Statistics, London School of Economics, London, UK.

Irini Moustaki (I)

Department of Statistics, London School of Economics, London, UK.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Humans Algorithms Software Artificial Intelligence Computer Simulation
Humans Robotic Surgical Procedures Clinical Competence Male Female

Classifications MeSH