Assessment of generalised Bayesian structural equation models for continuous and binary data.
Bayesian model assessment
cross-validation
factor analysis
scoring rules
Journal
The British journal of mathematical and statistical psychology
ISSN: 2044-8317
Titre abrégé: Br J Math Stat Psychol
Pays: England
ID NLM: 0004047
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
01
03
2023
accepted:
17
04
2023
medline:
4
10
2023
pubmed:
4
7
2023
entrez:
4
7
2023
Statut:
ppublish
Résumé
The paper proposes a novel model assessment paradigm aiming to address shortcoming of posterior predictive
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
559-584Informations de copyright
© 2023 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Références
Asparouhov, T., & Muthén, B. (2021a). Advances in Bayesian model fit evaluation for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 1-14.
Asparouhov, T., & Muthén, B. (2021b). Expanding the Bayesian structural equation, multilevel and mixture models to logit, negative-binomial, and nominal variables. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 622-637.
Asparouhov, T., Muthén, B., & Morin, A. J. S. (2015). Bayesian structural equation modeling with cross-loadings and residual covariances: Comments on stromeyer et al. Journal of Management, 41(6), 1561-1577.
Bhattacharya, A., & Dunson, D. (2011). Sparse Bayesian infinite factor models. Biometrika, 98(2), 291-306.
Bollen, K. A. (1989). Structural equations with latent variables. Wiley Series in Probability and Mathematical Statistics. Wiley.
Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44(1), 108-132.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32.
Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., & West, M. (2008). High-dimensional sparse factor modeling: Applications in gene expression genomics. Journal of the American Statistical Association, 103(484), 1438-1456.
Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85(2), 347-361.
Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., & Piatek, R. (2014). Bayesian exploratory factor analysis. Journal of Econometrics, 183(1), 31-57.
Dawid, A. P., & Musio, M. (2014). Theory and applications of proper scoring rules. METRON, 72(2), 169-183.
Dunson, D. B., Palomo, J., & Bollen, K. (2005). Bayesian structural equation modeling. SAMSI# TR2005-5.
Edwards, M. C. (2010). A Markov Chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474-497.
Erosheva, E. A., & Curtis, M. S. (2017). Dealing with reflection invariance in Bayesian factor analysis. Psychometrika, 82(2), 295-307.
Fong, E., & Holmes, C. (2020). On the marginal likelihood and cross-validation. Biometrika, 107(2), 489-496.
Frühwirth-Schnatter, S., & Lopes, H. F. (2018). Parsimonious Bayesian factor analysis when the number of factors is unknown. Unpublished Working Paper.
Garnier-Villarreal, M., & Jorgensen, T. D. (2020). Adapting fit indices for Bayesian structural equation modeling: Comparison to maximum likelihood. Psychological Methods, 25(1), 46.
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 555-497.
Geweke, J., & Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. The Review of Financial Studies, 9(2), 557-587.
Ghosh, J., & Dunson, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18(2), 306-320.
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359-378.
Heatherton, T., Kozlowski, L., Frecker, R., & Fagerstrom, K. (1991). The Fagerstrom test for nicotine dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 1119-1127.
Hoijtink, H., & van de Schoot, R. (2018). Testing small variance priors using prior-posterior predictive p values. Psychological Methods, 23(3), 561.
Jiang, Z., & Templin, J. (2019). Gibbs samplers for logistic item response models via the pólya-gamma distribution: A computationally efficient data-augmentation strategy. Psychometrika, 84(2), 358-374.
Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347-387.
Kaplan, D. (2014). Bayesian statistics for the social sciences. Guilford Publications.
Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
Krüger, F., Lerch, S., Thorarinsdottir, T., & Gneiting, T. (2021). Predictive inference based on Markov chain Monte Carlo output. International Statistical Review, 89(2), 274-301.
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1), 430-474.
Liang, X. (2020). Prior sensitivity in Bayesian structural equation modeling for sparse factor loading structures. Educational and Psychological Measurement, 80(6), 1025-1058.
Lindley, D. V. (1957). A statistical paradox. Biometrika, 44(1/2), 187-192.
Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41-67.
Lu, Z.-H., Chow, S.-M., & Loken, E. (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51(4), 519-539.
MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17(3), 340-345.
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490.
Maydeu-Olivares, A., & Joe, H. (2005). Limited and full-information estimation and goodness-of-fit testing in 2n contingency tables: A unified framework. Journal of the American Statistical Association, 6, 1009-1020.
Meng, X.-L. (1994). Posterior predictive p-values. The Annals of Statistics, 22(3), 1142-1160.
Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods. Psychometrika, 84(3), 802-829.
Merkle, E. C., & Rosseel, Y. (2015). blavaan: Bayesian structural equation models via parameter expansion. arXiv preprint arXiv:1511.05604.
Moustaki, I., & Knott, M. (2000). Weighting for item non-response in attitude scales by using latent variable models with covariates. Journal of the Royal Statistical Society, Series A, 163, 445-459.
Muthén, B., & Asparouhov, T. (2012). Bayesian Structural Equation Modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo (vol. 2, issue 11, p. 2). Chapman & Hall/CRC Press.
O'Muircheartaigh, C., & Moustaki, I. (1999). Symmetric pattern models: A latent variable approach to item non-response in attitude scales. Journal of the Royal Statistical Society, Series A, 162, 177-194.
Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatistics, 9(3), 523-539.
Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using pólya-gamma latent variables. Journal of the American Statistical Association, 108(504), 1339-1349.
Richardson, C. G., & Ratner, P. A. (2005). A confirmatory factor analysis of the Fagerstrom Test for Nicotine Dependence. Addictive Behaviors, 30(4), 697-709.
Rose, N., von Davier, M., & Nagengast, B. (2017). Modeling omitted and not-reached items in IRT models. Psychometrika, 82, 795-819.
Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64(1), 37-52.
Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a Bayesian approach. Journal of Educational Measurement, 42(4), 375-394.
Song, X.-Y., Lu, Z.-H., Cai, J.-H., & Ip, E. H.-S. (2013). A Bayesian modeling approach for generalized semiparametric structural equation models. Psychometrika, 78(4), 624-647.
Stromeyer, W. R., Miller, J. W., Sriramachandramurthy, R., & DeMartino, R. (2015). The prowess and pitfalls of Bayesian structural equation modeling: Important considerations for management research. Journal of Management, 41(2), 491-520.
Van De Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217-239.
Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23(2), 363.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved R̂ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2), 667-718.
Vitoratou, V., Ntzoufras, I., & Moustaki, I. (2014). Marginal likelihood estimation from the metropolis output: Tips and tricks for efficient implementation in generalized linear latent variable models. Journal of Statistical Computation and Simulation, 84(10), 2091-2105.
Yang, M., & Dunson, D. B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75(4), 675-693.