Characterization of pumilacidin, a lipopeptide biosurfactant produced from Bacillus pumilus NITDID1 and its prospect in bioremediation of hazardous pollutants.


Journal

Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427

Informations de publication

Date de publication:
04 Jul 2023
Historique:
received: 06 08 2022
accepted: 27 06 2023
medline: 6 7 2023
pubmed: 4 7 2023
entrez: 4 7 2023
Statut: epublish

Résumé

Highly hydrophobic compounds like petroleum and their byproducts, once released into the environment, can persist indefinitely by virtue of their ability to resist microbial degradation, ultimately paving the path to severe environmental pollution. Likewise, the accumulation of toxic heavy metals like lead, cadmium, chromium, etc., in the surroundings poses an alarming threat to various living organisms. To remediate the matter in question, the applicability of a biosurfactant produced from the mangrove bacterium Bacillus pumilus NITDID1 (Accession No. KY678446.1) is reported here. The structural characterization of the produced biosurfactant revealed it to be a lipopeptide and has been identified as pumilacidin through FTIR, NMR, and MALDI-TOF MS. The critical micelle concentration of pumilacidin was 120 mg/L, and it showed a wide range of stability in surface tension reduction experiments under various environmental conditions and exhibited a high emulsification index of as much as 90%. In a simulated setup of engine oil-contaminated sand, considerable oil recovery (39.78%) by this biosurfactant was observed, and upon being added to a microbial consortium, there was an appreciable enhancement in the degradation of the used engine oil. As far as the heavy metal removal potential of biosurfactant is concerned, as much as 100% and 82% removal was observed for lead and cadmium, respectively. Thus, in a nutshell, the pumilacidin produced from Bacillus pumilus NITDID1 holds promise for multifaceted applications in the field of environmental remediation.

Identifiants

pubmed: 37401995
doi: 10.1007/s00203-023-03619-4
pii: 10.1007/s00203-023-03619-4
doi:

Substances chimiques

Environmental Pollutants 0
pumilacidin 0
Lipopeptides 0
Cadmium 00BH33GNGH
Surface-Active Agents 0
Petroleum 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

274

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abdeshahian P, Fooladi T, Hamid AA et al (2016) Characterization, production and optimization of lipopeptide biosurfactant by new strain Bacillus pumilus 2IR isolated from an Iranian oil field. J Pet Sci Eng 145:510–519. https://doi.org/10.1016/j.petrol.2016.06.015
doi: 10.1016/j.petrol.2016.06.015
Araújo HWC, Andrade RFS, Montero-Rodríguez D et al (2019) Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Fact 18:1–13. https://doi.org/10.1186/s12934-018-1046-0
doi: 10.1186/s12934-018-1046-0
Badmus SO, Amusa HK, Oyehan TA, Saleh TA (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut Res 28:62085–62104. https://doi.org/10.1007/s11356-021-16483-w
doi: 10.1007/s11356-021-16483-w
Ben Ayed H, Jemil N, Maalej H et al (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegrad 99:8–14. https://doi.org/10.1016/j.ibiod.2014.12.009
doi: 10.1016/j.ibiod.2014.12.009
Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178. https://doi.org/10.1016/j.bej.2015.05.007
doi: 10.1016/j.bej.2015.05.007
Bezza FA, Chirwa EMN (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644. https://doi.org/10.1016/j.chemosphere.2015.08.027
doi: 10.1016/j.chemosphere.2015.08.027 pubmed: 26408261
Bezza FA, Tichapondwa SM, Chirwa EMN (2020) Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. J Hazard Mater 393:122319. https://doi.org/10.1016/j.jhazmat.2020.122319
doi: 10.1016/j.jhazmat.2020.122319 pubmed: 32120206
Borah D, Yadav RNS (2017) Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egypt J Pet 26:181–188. https://doi.org/10.1016/j.ejpe.2016.02.005
doi: 10.1016/j.ejpe.2016.02.005
Campinas UEDE, Gurjar J, Sengupta B et al (2015) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268. https://doi.org/10.1016/j.biortech.2015.04.013
doi: 10.1016/j.biortech.2015.04.013
Chandankere R, Yao J, Cai M et al (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148. https://doi.org/10.1016/j.fuel.2014.01.023
doi: 10.1016/j.fuel.2014.01.023
Chaprão MJ, da Silva R, de CFS, Rufino RD, et al (2018) Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of oil-contaminated environments. Ecotoxicology 27:1310–1322. https://doi.org/10.1007/s10646-018-1982-9
doi: 10.1007/s10646-018-1982-9 pubmed: 30392032
Chen Q, Li Y, Liu M et al (2021) Removal of Pb and Hg from marine intertidal sediment by using rhamnolipid biosurfactant produced by a Pseudomonas aeruginosa strain. Environ Technol Innov 22:101456. https://doi.org/10.1016/j.eti.2021.101456
doi: 10.1016/j.eti.2021.101456
Chittepu OR (2019) Isolation and characterization of biosurfactant producing bacteria from groundnut oil cake dumping site for the control of foodborne pathogens. Grain Oil Sci Technol 2:15–20. https://doi.org/10.1016/j.gaost.2019.04.004
doi: 10.1016/j.gaost.2019.04.004
Collivignarelli MC, Carnevale Miino M, Baldi M et al (2019) Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf Environ Prot 132:105–115. https://doi.org/10.1016/j.psep.2019.10.022
doi: 10.1016/j.psep.2019.10.022
Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229. https://doi.org/10.1128/aem.53.2.224-229.1987
doi: 10.1128/aem.53.2.224-229.1987 pubmed: 16347271 pmcid: 203641
Das AJ, Kumar R (2018) Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour Technol 260:233–240. https://doi.org/10.1016/j.biortech.2018.03.093
doi: 10.1016/j.biortech.2018.03.093 pubmed: 29626783
Das AJ, Kumar R (2019) Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environ Technol Innov 16:100450. https://doi.org/10.1016/j.eti.2019.100450
doi: 10.1016/j.eti.2019.100450
Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890. https://doi.org/10.1016/j.biortech.2009.05.028
doi: 10.1016/j.biortech.2009.05.028 pubmed: 19505818
Datta P, Tiwari P, Pandey LM (2018) Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Resour Technol. https://doi.org/10.1016/j.biortech.2018.09.047
doi: 10.1016/j.biortech.2018.09.047
De Faria AF, Teodoro-Martinez DS, De Oliveira Barbosa GN et al (2011) Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. https://doi.org/10.1016/j.procbio.2011.07.001
doi: 10.1016/j.procbio.2011.07.001
De Oliveira EM, Sales VHG, Andrade MS et al (2021) Isolation and characterization of biosurfactant-producing bacteria from amapaense amazon soils. Int J Microbiol. https://doi.org/10.1155/2021/9959550
doi: 10.1155/2021/9959550 pubmed: 34447438 pmcid: 8384547
de Oliveira JG, Garcia-Cruz CH (2013) Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Brazilian Arch Biol Technol 56:155–160. https://doi.org/10.1590/S1516-89132013000100020
doi: 10.1590/S1516-89132013000100020
El-Sheshtawy HS, Aiad I, Osman ME et al (2015) Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt J Pet 24:155–162. https://doi.org/10.1016/j.ejpe.2015.05.005
doi: 10.1016/j.ejpe.2015.05.005
Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Cent. https://doi.org/10.1186/s42269-019-0088-8
doi: 10.1186/s42269-019-0088-8
Gonçalves LRB, de Santana HB, Melo VMM et al (2015) Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 255:10–15. https://doi.org/10.1016/j.cattod.2015.01.046
doi: 10.1016/j.cattod.2015.01.046
Gudiña EJ, Fernandes EC, Rodrigues AI et al (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:1–7. https://doi.org/10.3389/fmicb.2015.00059
doi: 10.3389/fmicb.2015.00059
Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull 86:361–366. https://doi.org/10.1016/j.marpolbul.2014.06.043
doi: 10.1016/j.marpolbul.2014.06.043 pubmed: 25037876
Hentati D, Chebbi A, Hadrich F et al (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167:441–449. https://doi.org/10.1016/j.ecoenv.2018.10.036
doi: 10.1016/j.ecoenv.2018.10.036 pubmed: 30384057
Ismail W, Al-Rowaihi IS, Al-Humam AA et al (2013) Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeterior Biodegrad 84:168–178. https://doi.org/10.1016/j.ibiod.2012.04.017
doi: 10.1016/j.ibiod.2012.04.017
Jemil N, Manresa A, Rabanal F et al (2017) Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. J Chromatogr B Anal Technol Biomed Life Sci 1060:374–386. https://doi.org/10.1016/j.jchromb.2017.06.013
doi: 10.1016/j.jchromb.2017.06.013
Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608. https://doi.org/10.1016/j.biortech.2007.07.030
doi: 10.1016/j.biortech.2007.07.030 pubmed: 17855083
Joy S, Rahman PKSM, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J 317:232–241. https://doi.org/10.1016/j.cej.2017.02.054
doi: 10.1016/j.cej.2017.02.054
Ju M, Li X, Yu Q et al (2016) Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. Mar Pollut Bull 107:46–51. https://doi.org/10.1016/j.marpolbul.2016.04.025
doi: 10.1016/j.marpolbul.2016.04.025 pubmed: 27114088
Khopade A, Ren B, Liu XY et al (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318. https://doi.org/10.1016/j.jcis.2011.11.009
doi: 10.1016/j.jcis.2011.11.009 pubmed: 22138266
Li J, Deng M, Wang Y, Chen W (2016) Production and characteristics of biosurfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. Int Biodeterior Biodegrad 112:72–79. https://doi.org/10.1016/j.ibiod.2016.05.002
doi: 10.1016/j.ibiod.2016.05.002
Liu Q, Lin J, Wang W et al (2014) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37. https://doi.org/10.1016/j.bej.2014.08.023
doi: 10.1016/j.bej.2014.08.023
Long X, He N, He Y et al (2017) Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 241:200–206. https://doi.org/10.1016/j.biortech.2017.05.120
doi: 10.1016/j.biortech.2017.05.120 pubmed: 28570884
Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ Prot 102:558–566. https://doi.org/10.1016/j.psep.2016.05.010
doi: 10.1016/j.psep.2016.05.010
Mani P, Sivakumar P, Balan SS (2016) Economic production and oil recovery efficiency of a lipopeptide biosurfactant from a Novel marine bacterium Bacillus simplex. Achiev Life Sci 10:102–110. https://doi.org/10.1016/j.als.2016.05.010
doi: 10.1016/j.als.2016.05.010
Mendes PM, Ribeiro JA, Martins GA et al (2021) Phytotoxicity test in check: Proposition of methodology for comparison of different method adaptations usually used worldwide. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112698
doi: 10.1016/j.jenvman.2021.112698 pubmed: 33971513 pmcid: 7988504
Mishra S, Lin Z, Pang S et al (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418:126253. https://doi.org/10.1016/j.jhazmat.2021.126253
doi: 10.1016/j.jhazmat.2021.126253 pubmed: 34119972
Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81. https://doi.org/10.1016/j.psep.2017.02.002
doi: 10.1016/j.psep.2017.02.002
Muthukamalam S, Sivagangavathi S, Dhrishya D, Sudha Rani S (2017) Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Brazilian J Microbiol 48:637–647. https://doi.org/10.1016/j.bjm.2017.02.007
doi: 10.1016/j.bjm.2017.02.007
Nayak NS, Purohit MS, Tipre DR, Dave SR (2020) Biosurfactant production and engine oil degradation by marine halotolerant Bacillus licheniformis LRK1. Biocatal Agric Biotechnol 29:101808. https://doi.org/10.1016/j.bcab.2020.101808
doi: 10.1016/j.bcab.2020.101808
Ohadi M, Dehghannoudeh G, Forootanfar H et al (2018) Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int J Biol Macromol 112:712–719. https://doi.org/10.1016/j.ijbiomac.2018.01.209
doi: 10.1016/j.ijbiomac.2018.01.209 pubmed: 29425877
Pandey R, Krishnamurthy B, Singh HP, Batish DR (2022) Evaluation of a glycolipopepetide biosurfactant from Aeromonas hydrophila RP1 for bioremediation and enhanced oil recovery. J Clean Prod 345:131098. https://doi.org/10.1016/j.jclepro.2022.131098
doi: 10.1016/j.jclepro.2022.131098
Pathak KV, Keharia H (2014) Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). 3 Biotech 4:41–48. https://doi.org/10.1007/s13205-013-0119-3
doi: 10.1007/s13205-013-0119-3 pubmed: 28324457
Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:1–14. https://doi.org/10.3389/fmicb.2017.00279
doi: 10.3389/fmicb.2017.00279
Phulpoto IA, Jakhrani BA, Phulpoto AH et al (2020) Enhanced oil recovery by potential biosurfactant-producing halo-thermotolerant bacteria using soil washing and sand-packed glass column techniques. Curr Microbiol 77:3300–3309. https://doi.org/10.1007/s00284-020-02172-3
doi: 10.1007/s00284-020-02172-3 pubmed: 32895803
Purwasena IA, Astuti DI, Syukron M et al (2019) Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. J Pet Sci Eng 183:106383. https://doi.org/10.1016/j.petrol.2019.106383
doi: 10.1016/j.petrol.2019.106383
Ravindran A, Sajayan A, Priyadharshini GB et al (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:1–11. https://doi.org/10.3389/fmicb.2020.00222
doi: 10.3389/fmicb.2020.00222
Saggese A, Culurciello R, Casillo A et al (2018) A marine isolate of Bacillus pumilus secretes a pumilacidin active against staphylococcus aureus. Mar Drugs 16:1–13. https://doi.org/10.3390/md16060180
doi: 10.3390/md16060180
Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139. https://doi.org/10.1016/j.biortech.2015.04.126
doi: 10.1016/j.biortech.2015.04.126 pubmed: 25985416
Sarubbo LA, da Silva MGC, Durval IJB et al (2022) Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J. https://doi.org/10.1016/j.bej.2022.108377
doi: 10.1016/j.bej.2022.108377
Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. Tech Note 101:1–6
Sharma AD, Singh J (2005) A nonenzymatic method to isolate genomic DNA from bacteria and actinomycete. Anal Biochem 337:354–356. https://doi.org/10.1016/j.ab.2004.11.029
doi: 10.1016/j.ab.2004.11.029 pubmed: 15691519
Sharma S, Pandey LM (2020) Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Bioresour Technol 307:123261. https://doi.org/10.1016/j.biortech.2020.123261
doi: 10.1016/j.biortech.2020.123261 pubmed: 32247277
Sharma D, Pruthi V, Al Ghamdi A et al (2015) Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur J Microbiol. https://doi.org/10.5812/jjm.21257
doi: 10.5812/jjm.21257 pubmed: 26495106 pmcid: 4609174
Sharma R, Singh J, Verma N (2018) Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal Agric Biotechnol 16:132–139. https://doi.org/10.1016/j.bcab.2018.07.028
doi: 10.1016/j.bcab.2018.07.028
Sharma S, Verma R, Pandey LM (2019) Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatal Agric Biotechnol 21:101322. https://doi.org/10.1016/j.bcab.2019.101322
doi: 10.1016/j.bcab.2019.101322
Sharma J, Kapley A, Sundar D, Srivastava P (2022) Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids Surfaces B Biointerfaces 214:112453. https://doi.org/10.1016/j.colsurfb.2022.112453
doi: 10.1016/j.colsurfb.2022.112453 pubmed: 35305323
Shibulal B, Joshi S, Al-Bemani A et al (2013) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333. https://doi.org/10.1016/j.colsurfb.2013.09.022
doi: 10.1016/j.colsurfb.2013.09.022 pubmed: 24240116
Silva SNRL, Farias CBB, Rufino RD et al (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B Biointerfaces 79:174–183. https://doi.org/10.1016/j.colsurfb.2010.03.050
doi: 10.1016/j.colsurfb.2010.03.050 pubmed: 20417068
Sriram MI, Kalishwaralal K, Deepak V et al (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181. https://doi.org/10.1016/j.colsurfb.2011.02.026
doi: 10.1016/j.colsurfb.2011.02.026 pubmed: 21458961
Sun W, Zhu B, Yang F et al (2021) Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere 265:129090. https://doi.org/10.1016/j.chemosphere.2020.129090
doi: 10.1016/j.chemosphere.2020.129090 pubmed: 33293052
Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230. https://doi.org/10.1016/j.mimet.2008.06.007
doi: 10.1016/j.mimet.2008.06.007 pubmed: 18625271
Tekinay T, Angun P, Han D et al (2015) Production and structural characterization of biosurfactant produced by newly isolated Staphylococcus xylosus STF1 from petroleum contaminated soil. J Pet Sci Eng 133:689–694. https://doi.org/10.1016/j.petrol.2015.07.011
doi: 10.1016/j.petrol.2015.07.011
Yalçın HT, Ergin-Tepebaşı G, Uyar E (2018) Isolation and molecular characterization of biosurfactant producing yeasts from the soil samples contaminated with petroleum derivatives. J Basic Microbiol 58:782–792. https://doi.org/10.1002/jobm.201800126
doi: 10.1002/jobm.201800126 pubmed: 29938807
Yin J, Wei X, Hu F et al (2023) Halotolerant Bacillus velezensis sustainably enhanced oil recovery of low permeability oil reservoirs by producing biosurfactant and modulating the oil microbiome. Chem Eng J. https://doi.org/10.1016/j.cej.2022.139912
doi: 10.1016/j.cej.2022.139912
Zargar AN, Lymperatou A, Skiadas I et al (2022) Structural and functional characterization of a novel biosurfactant from Bacillus sp IITD106. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127201
doi: 10.1016/j.jhazmat.2021.127201 pubmed: 34560483
Zhang J, Xue Q, Gao H et al (2016) Production of lipopeptide biosurfactants by Bacillus atrophaeus 5–2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact 15:1–11. https://doi.org/10.1186/s12934-016-0574-8
doi: 10.1186/s12934-016-0574-8
Zhang J, Feng W, Xue Q (2022) Biosurfactant production and oil degradation by Bacillus siamensis and its potential applications in enhanced heavy oil recovery. Int Biodeterior Biodegrad 169:105388. https://doi.org/10.1016/j.ibiod.2022.105388
doi: 10.1016/j.ibiod.2022.105388
Zhou H, Liu Q, Jiang L et al (2023) Enhanced remediation of oil-contaminated intertidal sediment by bacterial consortium of petroleum degraders and biosurfactant producers. Chemosphere 330:138763. https://doi.org/10.1016/j.chemosphere.2023.138763
doi: 10.1016/j.chemosphere.2023.138763 pubmed: 37094722

Auteurs

Arpan Dasgupta (A)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Department of Microbiology, Michael Madhusudan Memorial College, Durgapur, West Bengal, 713216, India.

Sourav Saha (S)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.

Parna Ganguli (P)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.

Ishita Das (I)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.

Debojyoti De (D)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.

Surabhi Chaudhuri (S)

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India. surabhi.chaudhuri@gmail.com.

Articles similaires

Prenatal metal exposures and kidney function in adolescence in Project Viva.

Natalie F Price, Pi-I D Lin, Andres Cardenas et al.
1.00
Humans Adolescent Female Pregnancy Prenatal Exposure Delayed Effects
Soil Pollutants Cadmium Arsenic Soil Microbiology Iron
Methionine Bacterial Proteins Manganese Brevibacillus Copper
Pentachlorophenol Biodegradation, Environmental Bioreactors Adsorption Anaerobiosis

Classifications MeSH