Effective co-immobilization of arsenic and cadmium in contaminated soil by sepiolite-modified nano-zero-valent iron and its impact on the soil bacterial community.
Arsenic
Cadmium
Sepiolite-modified nano-zero-valent iron
Soil bacterial community
Water management
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
01
07
2024
accepted:
18
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Sepiolite-modified nano-zero-valent iron (S-nZVI) is used as an amendment and incubated to remediate As-Cd-contaminated soil under three different soil‒water management conditions [moderately wet (MW), continuously flooded (CF) and alternately wet and dry (AWD)]. The results showed that soil pH is in the order of CF > AWD > MW. The soil pH increased approximately 0.5 to 1 unit by 3% and 5% doses after 36 d of incubation. Soil pH was negatively correlated with available As-Cd content under the three water regimes (p < 0.01). All doses of S-nZVI significantly reduced soil available As-Cd under the three soil moistures by 45-80% for As and 5-45% for Cd. Moreover, S-nZVI addition also promoted the transformation of As-Cd in the acid-extracted fraction, oxidation fraction, and reduced fraction to a more stable residue fraction. High-throughput sequencing results showed that high doses of S-nZVI had a significant adverse effect on soil bacterial diversity and richness. After 36 d of incubation, the Chao1 index and the Shannon index were significantly decreased in MW, CF, and AWD, respectively. Decreasing the S-nZVI dose and increasing the incubation time simultaneously reduced As-Cd availability and S-nZVI ecotoxicity in the soil, thereby effectively maintaining the survivability of the original dominant bacteria, increasing the soil pH, and promoting the interaction between dominant bacteria and soil factors in As-Cd cocontaminated soil.
Identifiants
pubmed: 39478164
doi: 10.1038/s41598-024-77066-6
pii: 10.1038/s41598-024-77066-6
doi:
Substances chimiques
Soil Pollutants
0
Cadmium
00BH33GNGH
Arsenic
N712M78A8G
Iron
E1UOL152H7
Magnesium Silicates
0
Soil
0
magnesium trisilicate
C2E1CI501T
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26178Subventions
Organisme : Xinjiang Key Laboratory of Soil and Plant Ecological Processes
ID : 23XJTRZW03
Organisme : National Key Research and Development Program
ID : 2023YFD1902400-02
Organisme : National Key Research and Development Program
ID : (2022YFD1700102, 2022YFD1700105)
Organisme : National Key Research and Development Program
ID : (2022YFD1700102, 2022YFD1700105)
Organisme : Natural Science Foundation Project of Sichuan Province
ID : 2022NSFSC1059
Organisme : Agricultural Science and Technology Innovation Program
ID : CAAS-AST2P-2021-2EDA
Informations de copyright
© 2024. The Author(s).
Références
1. Fan, T., Long, T., Lu, Y., Yang, L., Mi, N., Xia, F., Wang, X., Deng, S., Hu, Q., Zhang, F. Meta-analysis of Cd input-output fluxes in agricultural soil. Chemosphere, 2022, 303, 134974.
2. Zhao, F., Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 2020, 446 (1), 1–21.
3. Qiao, J., Yu, H., Wang, X., Li, F., Wang, Q., Yuan, Y., Liu, C. The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar, 2019, 1(2), 203–212.
4. Li, Y., Zhang, M., Xu, R., Lin, H., Sun, X., Xu, F., Gao, P., Kong, T., Xiao, E., Yang, N., Sun, W., 2021. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int., 2021, 153, 106522.
5. Lima, J. Z., Raimondi, I. M., Schalch, V., Rodrigues, V.G. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. J. Environ. Manage. 2018, 226, 386–399.
6. Lombi, E., Donner, E., Dusinska, M., Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 2019, 14(6), 523–531.
7. Xie, K., Xie, N., Liao, Z., Luo, X., Peng, W., Yuan, Y. Bioaccessibility of arsenic, lead, and cadmium in contaminated mining/smelting soils: Assessment, modeling, and application for soil environment criteria derivation. J. Hazard. Mater.2023, 443, 130321.
8. Arao, T., Kawasaki, A., Baba, K., Mori, S., Matsumoto, S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol. 2009, 43(24), 9361–9367.
9. Qiao, J.T., Liu, T. X., Wang, X. Q., Li, F. B., Lv, Y. H., Cui, J. H., Zeng X. D., Yuan, Y. Z., Liu, C. P. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 2018, 195, 260–271.
10. Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd (II), Pb (II), and As (III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11.
11. Kanel, S. R., Manning, B., Charlet, L., Choi, H., 2005. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39(5), 1291–1298.
12. Zhang, Y., Li, Y., Dai, C., Zhou, X., Zhang, W. Sequestration of Cd (II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chem. Eng. J. 2014, 244, 218–226.
13. Dong, H., Lo, I. M. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Res. 2013, 47(7), 2489–2496.
14. Tarekegn, M. M., Hiruy, A. M., Dekebo, A. H. Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv.2021, 11(30), 18539–18551.
15. Xu, C., Qi, J., Yang, W., Chen, Y., Yang, C., He, Y., Wang, J., Lin, A. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Sci. Total Environ.2019, 686, 476–483.
16. Liang, W., Wang, G., Peng, C., Tan, J., Wan, J., Sun, P., Li, Q., Ji, X., Zhang, Q., Wu, Y., Zhang, W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. J. Hazard. Mater. 2022, 426, 127993.
17. Sun, Y. Y., Liu, R. L., Zeng, X. B., Lin, Q. M., Bai, L. Y., Li, L. F., Su, S. M., Wang, Y. N. Reduction of arsenic bioavailability by amending seven inorganic materials in arsenic contaminated soil. J. Integ. Agri. 2015, 14(7), 1414–1422.
18. Sun, Y., Sun, G., Xu, Y., Wang, L., Liang, X., Lin, D., 2013. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma. 2013, 193, 149–155.
19. Abad-Valle, P., Álvarez-Ayuso, E., Murciego, A., Pellitero, E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma. 2016, 280: 57–66.
20. Liu, Y., Wu, T., White, J. C., Lin, D. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 2021. 16(2), 197–205.
21. Kirschling, T. L., Gregory, K. B., Minkley, Jr. E. G., Lowry, G.V., Tilton, R. D. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol. 2010. 44(9), 3474–3480.
22. Wu, D., Shen, Y., Ding, A., Mahmood, Q., Liu, S., Tu, Q. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J. Hazard. Mater. 2013, 262, 649–655.
23. Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., Shaw, L. J. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ. Pollut. 2013, 173, 38–46.
24. Hui, C., Liu, B., Du, L., Xu, L., Zhao, Y., Shen, D., Long, Y. Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems. Environ. Pollut.2022. 306, 119363.
25. Ainiwaer, M., Zhang, T., Zhang, N., Yin, X., Su, S., Wang, Y., Zhang, Y., Zeng, X. Synergistic removal of As (III) and Cd (II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study. J. Environ. Manage. 2022.319, 115658.
26. Woolson, E. A., Axley, J. H., Kearney, P. C. Correlation Between Available Soil Arsenic, Estimated by Six Methods, and Response of Corn (Zea Mays L.). Soil Sci. Soc. Am. J. 1971, 35(1), 101–105.
27. Li, Y., Zhang, M., Xu, R., Lin, H., Sun, X., Xu, F., Gao, P., Kong, T., Xiao, E., Yang, N., Sun, W., 2021. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 2021, 153, 106522.
28. Nemati, K., Bakar, N. K. A., Abas, M. R., Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192: 402–410.
29. Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X., Bi, D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 2015, 138, 726–734.
30. Lazarević, S., Janković-Častvan, I., Jovanović, D., Milonjić, S., Janaćković, D., Petrović, R. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 2007, 37(1–2), 47–57.
31. Salam, A., Shaheen, S. M., Bashir, S., Khan, I., Wang, J., Rinklebe, J., Rehman, F., Hu, H. Rice straw-and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J. Environ. Manage.2019, 237, 5–14.
32. Rinklebe, J., Shaheen, S. M., Frohne, T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere. 2016, 142: 41–47.
33. Wang, Y., Liu, Y., Su, G., Yang, K., Lin, D. Transformation and implication of nanoparticulate zero valent iron in soils. J. Hazard. Mater. 2021, 412, 125207.
34. Li, X. Q., Elliott, D. W., Zhang, W. X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State, 2006, 31(4), 111–122.
35. Mu, Y., Jia, F., Ai, Z., Zhang, L. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci. Nano. 2017, 4(1), 27–45.
36. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., Crowley, D., 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem, 2011, 43(9), 1812–1836.
37. Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., Katou, H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50(8), 4178–4185.
38. Fan, J., Chen, X., Xu, Z., Xu, X., Zhao, L., Qiu, H., Cao, X. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation. J. Hazard. Mater. 2020, 398, 122901.
39. Li, H. B., Li, M. Y., Zhao, D., Li, J., Li, S. W., Xiang, P., Juhasz, A. L., Ma, L. Q., 2020. Arsenic, lead, and cadmium bioaccessibility in contaminated soils: measurements and validations. Environ. Health Persp, 2020, 50(13), 1303–1338.
40. Sungur, A., Soylak, M., Yilmaz, E., Yilmaz, S., Ozcan, H. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil Sediment Contam, 2015, 24(1), 1–15.
41. Li, B., Zhang, T., Zhang, Q., Zhu, Q. H., Huang, D. Y., Zhu, H. H., Xu, C., Su, S.M., Zeng, X. B. Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain. Chemosphere, 2022. 300, 134368.
42. Liu, K., Li, F., Cui, J., Yang, S., Fang, L. Simultaneous removal of Cd (II) and As (III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. J. Hazard. Mater.2020. 395, 122623.
43. Xiao, L., Yu, Z., Liu, H., Tan, T., Yao, J., Zhang, Y., Wu, J. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology, 2020. 29, 551–558.
44. Li, Z., Wang, L., Wu, J., Xu, Y., Wang, F., Tang, X., Xu, J., Ok, Y. S., Meng, J., Liu, X., 2020. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environ. Pollut. 2020. 260, 114098.
45. Vanzetto, G. V., Thomé, A. Toxicity of nZVI in the growth of bacteria present in contaminated soil. Chemosphere, 2022. 303, 135002.
46. Němeček, J., Pokorný, P., Lhotský, O., Knytl, V., Najmanová, P., Steinová, J., Černík, M., Filipová, A., Filip, J., Cajthaml, T. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci. Total Environ. 2016. 563, 822–834.
47. Gomez-Sagasti, M. T., Epelde, L., Anza, M., Urra, J., Alkorta, I., Garbisu, C. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. J. Hazard. Mater. 2019. 364, 591–599.
48. Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., Zhang, Y. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J. Hazard. Mater. 2017. 321, 390–407.
49. Fajardo, C., García-Cantalejo, J., Botías, P., Costa, G., Nande, M., Martin, M. New insights into the impact of nZVI on soil microbial biodiversity and functionality. J. Env. Sci. and Heal. 2019. 54(3), 157–167.
50. Diao, M. H, Yao, M. S. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43(20), 5243–5251.
51. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P.H., Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008. 17, 372–386.
52. Lin, J., He, F., Su, B., Sun, M., Owens, G., Chen, Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater. 2019, 379, 120832.
53. Anza, M., Salazar, O., Epelde, L., Alkorta, I., Garbisu, C. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity. Front. Environ. Sci. 2019. 7, 19.
54. Crampon, M., Joulian, C., Ollivier, P., Charron, M., Hellal, J. Shift in natural groundwater bacterial community structure due to zero-valent iron nanoparticles (nZVI). Front. Microbiol. 2019, 10, 533.
55. Sheng, D., Chen, M., Chen, Q., Huang, Y Opposite selection effects of nZVI and PAHs on bacterial community composition revealed by universal and sphingomonads-specific 16S rRNA primers. Environ. Pollut. 2022. 311, 119893.
56. Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A., Camargo, F. A., Clark, I. M., McGrath, S. P., Triplett, E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015. 69, 395–406.
57. Siciliano, S. D., Palmer, A. S., Winsley, T., Lamb, E., Bissett, A., Brown, M. V., Dorst, J., Ji, M. K., Ferrari, B. C., Grogan, P., Chu, H. Y., Snape, I. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol. Biochem. 2014, 78, 10–20.
58. Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., Chu, H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211.
59. Wang, L., Chen, H., Wu, J., Huang, L., Brookes, P. C., Rodrigues, J. L. M., Xu, J., Liu, X. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. J. Hazard. Mater. 2021, 414, 125494.
60. Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M.L., Nande, M., Lobo, M. C., Martin, M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere. 2012, 86, 802–808.
61. Tian, X., Xie, Q., Chai, G., Li, G. Simultaneous adsorption of As (III) and Cd (II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects. Sci. Rep. 2022, 12(1), 5918.
62. Liu, M., Wang, J., Xu, M., Tang, S., Zhou, J., Pan, W., Ma, Q., Wu, L. Nano zero-valent iron-induced changes in soil iron species and soil bacterial communities contribute to the fate of Cd. J. Hazard. Mater. 2022, 424, 127343.