Therapy-induced APOBEC3A drives evolution of persistent cancer cells.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 28 09 2020
accepted: 08 06 2023
medline: 11 8 2023
pubmed: 6 7 2023
entrez: 5 7 2023
Statut: ppublish

Résumé

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified

Identifiants

pubmed: 37407818
doi: 10.1038/s41586-023-06303-1
pii: 10.1038/s41586-023-06303-1
doi:

Substances chimiques

APOBEC3A protein, human EC 3.5.4.5
Cytidine Deaminase EC 3.5.4.5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

393-401

Subventions

Organisme : NCI NIH HHS
ID : P50 CA265826
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA137008
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA164273
Pays : United States

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).
pubmed: 15728811 doi: 10.1056/NEJMoa044238
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).
pubmed: 17463250 doi: 10.1126/science.1141478
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med. 3, 75ra26 (2011).
pubmed: 21430269 pmcid: 3132801 doi: 10.1126/scitranslmed.3002003
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
pubmed: 27432227 pmcid: 5050111 doi: 10.1158/2159-8290.CD-16-0596
Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).
pubmed: 27283515 pmcid: 4930407 doi: 10.1016/j.tibs.2016.05.001
de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).
pubmed: 25301630 pmcid: 4636050 doi: 10.1126/science.1253462
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).
pubmed: 23852170 pmcid: 3789062 doi: 10.1038/ng.2702
Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).
pubmed: 23389445 pmcid: 3907282 doi: 10.1038/nature11881
Cortez, L. M. et al. APOBEC3A is a prominent cytidine deaminase in breast cancer. PLoS Genet. 15, e1008545 (2019).
pubmed: 31841499 pmcid: 6936861 doi: 10.1371/journal.pgen.1008545
Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med. https://doi.org/10.1084/jem.20200261 (2020).
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).
pubmed: 26828195 pmcid: 4900892 doi: 10.1038/nm.4040
Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).
pubmed: 26698910 doi: 10.1056/NEJMoa1508887
Yoda, S. et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 8, 714–729 (2018).
pubmed: 29650534 pmcid: 5984716 doi: 10.1158/2159-8290.CD-17-1256
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084 pmcid: 3414841 doi: 10.1016/j.cell.2012.04.024
Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat. Genet. 52, 958–968 (2020).
pubmed: 32747826 pmcid: 7610516 doi: 10.1038/s41588-020-0674-6
Endesfelder, D. et al. Chromosomal instability selects gene copy-number variants encoding core regulators of proliferation in ER+ breast cancer. Cancer Res. 74, 4853–4863 (2014).
pubmed: 24970479 pmcid: 4167338 doi: 10.1158/0008-5472.CAN-13-2664
Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294 (2019).
pubmed: 30849372 pmcid: 6424819 doi: 10.1016/j.cell.2019.02.012
Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).
pubmed: 32532990 pmcid: 7293259 doi: 10.1038/s41467-020-16802-8
Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).
pubmed: 26258849 pmcid: 4594173 doi: 10.1038/ng.3378
Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science https://doi.org/10.1126/science.aaw2872 (2019).
Ito, F., Fu, Y., Kao, S. A., Yang, H. & Chen, X. S. Family-wide comparative analysis of cytidine and methylcytidine deamination by eleven human APOBEC proteins. J. Mol. Biol. 429, 1787–1799 (2017).
pubmed: 28479091 pmcid: 5530319 doi: 10.1016/j.jmb.2017.04.021
Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807 (2022).
pubmed: 35859169 pmcid: 9329121 doi: 10.1038/s41586-022-04972-y
Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).
pubmed: 29151359 doi: 10.1056/NEJMoa1713137
Sharma, S. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 6, 6881 (2015).
pubmed: 25898173 doi: 10.1038/ncomms7881
Sharma, S., Patnaik, S. K., Kemer, Z. & Baysal, B. E. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol. 14, 603–610 (2017).
pubmed: 27149507 doi: 10.1080/15476286.2016.1184387
Sharma, S. & Baysal, B. E. Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G. PeerJ 5, e4136 (2017).
pubmed: 29230368 pmcid: 5723131 doi: 10.7717/peerj.4136
Oh, S. & Buisson, R. A digital PCR-based protocol to detect and quantify RNA editing events at hotspots. STAR Protoc. 3, 101148 (2022).
pubmed: 35284835 pmcid: 8915000 doi: 10.1016/j.xpro.2022.101148
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).
pubmed: 28498782 doi: 10.1200/JCO.2016.71.9096
Offin, M. et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J. Thorac. Oncol. 14, 1784–1793 (2019).
pubmed: 31228622 pmcid: 6764905 doi: 10.1016/j.jtho.2019.06.002
Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6, 6377 (2015).
pubmed: 25758528 doi: 10.1038/ncomms7377
Piotrowska, Z. et al. Heterogeneity and coexistence of T790M and T790 wild-type resistant subclones drive mixed response to third-generation epidermal growth factor receptor inhibitors in lung cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00263 (2018).
Oh, S. et al. Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nat. Commun. 12, 4917 (2021).
pubmed: 34389714 pmcid: 8363607 doi: 10.1038/s41467-021-25203-4
Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).
pubmed: 21430781 pmcid: 3541675 doi: 10.1038/nature09870
Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep. 11, 98–110 (2015).
pubmed: 25843712 pmcid: 4394036 doi: 10.1016/j.celrep.2015.03.012
Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).
pubmed: 23446422 pmcid: 4636055 doi: 10.1038/nature11935
Choudhury, N. J. et al. Molecular biomarkers of disease outcomes and mechanisms of acquired resistance to first-line osimertinib in advanced EGFR-mutant lung cancers. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2022.11.022 (2022).
Grillo, M. J., Jones, K. F. M., Carpenter, M. A., Harris, R. S. & Harki, D. A. The current toolbox for APOBEC drug discovery. Trends Pharmacol. Sci. 43, 362–377 (2022).
pubmed: 35272863 pmcid: 9018551 doi: 10.1016/j.tips.2022.02.007
Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).
pubmed: 25394791 pmcid: 4388482 doi: 10.1126/science.1254721
Bailey, M. H. et al. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat. Commun. 11, 4748 (2020).
pubmed: 32958763 pmcid: 7505971 doi: 10.1038/s41467-020-18151-y
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
Lin, J. J. et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. NPJ Precis. Oncol. 4, 21 (2020).
pubmed: 32802958 pmcid: 7400592 doi: 10.1038/s41698-020-0127-9
Dardaei, L. et al. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med. 24, 512–517 (2018).
pubmed: 29505033 pmcid: 6343825 doi: 10.1038/nm.4497
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567 pmcid: 3919509 doi: 10.1038/nature12213
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).
pubmed: 24390350 pmcid: 4048962 doi: 10.1038/nature12912
Ellrott, K. et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 6, 271–281 (2018).
pubmed: 29596782 pmcid: 6075717 doi: 10.1016/j.cels.2018.03.002
Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 23, 228–235 (2013).
pubmed: 23124520 pmcid: 3561864 doi: 10.1101/gr.141382.112
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
pubmed: 19541911 pmcid: 2752132 doi: 10.1101/gr.092759.109
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090 pmcid: 5623106 doi: 10.1038/nmeth.4396
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Chen, Y., Lun, A. T. & Smyth, G. K. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5, 1438 (2016).
pubmed: 27508061 pmcid: 4934518
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706 pmcid: 5623146 doi: 10.1038/nmeth.4401
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473 doi: 10.1093/nar/gkx1126
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res. 77, 4567–4578 (2017).
pubmed: 28698210 pmcid: 5609510 doi: 10.1158/0008-5472.CAN-16-3389
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D. & Clement, M. V. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2, 457–465 (2014).
pubmed: 24624335 pmcid: 3949099 doi: 10.1016/j.redox.2013.12.020
Raoof, S. et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene 38, 6399–6413 (2019).
pubmed: 31324888 pmcid: 6742540 doi: 10.1038/s41388-019-0887-2

Auteurs

Hideko Isozaki (H)

Massachusetts General Hospital Cancer Center, Boston, MA, USA. hisozaki@mgh.harvard.edu.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. hisozaki@mgh.harvard.edu.

Ramin Sakhtemani (R)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Ammal Abbasi (A)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Naveed Nikpour (N)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Marcello Stanzione (M)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Sunwoo Oh (S)

Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA.

Adam Langenbucher (A)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Susanna Monroe (S)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Wenjia Su (W)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Heidie Frisco Cabanos (HF)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Faria M Siddiqui (FM)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Nicole Phan (N)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Pégah Jalili (P)

Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA.

Daria Timonina (D)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Samantha Bilton (S)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Maria Gomez-Caraballo (M)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Hannah L Archibald (HL)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Varuna Nangia (V)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Kristin Dionne (K)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Amanda Riley (A)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Matthew Lawlor (M)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Mandeep Kaur Banwait (MK)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Rosemary G Cobb (RG)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.

Lee Zou (L)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.

Nicholas J Dyson (NJ)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Christopher J Ott (CJ)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Cyril Benes (C)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Gad Getz (G)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
Department of Pathology, Harvard Medical School, Boston, MA, USA.

Chang S Chan (CS)

Department of Medicine, Rutgers Robert Wood Johnson Medical School and Center for Systems and Computational Biology, Rutgers Cancer Institute, New Brunswick, NJ, USA.

Alice T Shaw (AT)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Justin F Gainor (JF)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Jessica J Lin (JJ)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Lecia V Sequist (LV)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Zofia Piotrowska (Z)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Beow Y Yeap (BY)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Jeffrey A Engelman (JA)

Massachusetts General Hospital Cancer Center, Boston, MA, USA.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Jake June-Koo Lee (JJ)

Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Yosef E Maruvka (YE)

Faculty of Biotechnology and Food Engineering, Lorey Loki Center for Life Science and Engineering, Technion, Haifa, Israel.

Rémi Buisson (R)

Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA.
Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.

Michael S Lawrence (MS)

Massachusetts General Hospital Cancer Center, Boston, MA, USA. mslawrence@mgh.harvard.edu.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. mslawrence@mgh.harvard.edu.
Broad Institute of MIT and Harvard, Cambridge, MA, USA. mslawrence@mgh.harvard.edu.

Aaron N Hata (AN)

Massachusetts General Hospital Cancer Center, Boston, MA, USA. ahata@mgh.harvard.edu.
Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ahata@mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH