Therapy-induced APOBEC3A drives evolution of persistent cancer cells.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
28
09
2020
accepted:
08
06
2023
medline:
11
8
2023
pubmed:
6
7
2023
entrez:
5
7
2023
Statut:
ppublish
Résumé
Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified
Identifiants
pubmed: 37407818
doi: 10.1038/s41586-023-06303-1
pii: 10.1038/s41586-023-06303-1
doi:
Substances chimiques
APOBEC3A protein, human
EC 3.5.4.5
Cytidine Deaminase
EC 3.5.4.5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-401Subventions
Organisme : NCI NIH HHS
ID : P50 CA265826
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA137008
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA164273
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).
pubmed: 15728811
doi: 10.1056/NEJMoa044238
Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).
pubmed: 17463250
doi: 10.1126/science.1141478
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med. 3, 75ra26 (2011).
pubmed: 21430269
pmcid: 3132801
doi: 10.1126/scitranslmed.3002003
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
pubmed: 27432227
pmcid: 5050111
doi: 10.1158/2159-8290.CD-16-0596
Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).
pubmed: 27283515
pmcid: 4930407
doi: 10.1016/j.tibs.2016.05.001
de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).
pubmed: 25301630
pmcid: 4636050
doi: 10.1126/science.1253462
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).
pubmed: 23852170
pmcid: 3789062
doi: 10.1038/ng.2702
Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).
pubmed: 23389445
pmcid: 3907282
doi: 10.1038/nature11881
Cortez, L. M. et al. APOBEC3A is a prominent cytidine deaminase in breast cancer. PLoS Genet. 15, e1008545 (2019).
pubmed: 31841499
pmcid: 6936861
doi: 10.1371/journal.pgen.1008545
Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med. https://doi.org/10.1084/jem.20200261 (2020).
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).
pubmed: 26828195
pmcid: 4900892
doi: 10.1038/nm.4040
Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).
pubmed: 26698910
doi: 10.1056/NEJMoa1508887
Yoda, S. et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 8, 714–729 (2018).
pubmed: 29650534
pmcid: 5984716
doi: 10.1158/2159-8290.CD-17-1256
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).
pubmed: 22608084
pmcid: 3414841
doi: 10.1016/j.cell.2012.04.024
Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat. Genet. 52, 958–968 (2020).
pubmed: 32747826
pmcid: 7610516
doi: 10.1038/s41588-020-0674-6
Endesfelder, D. et al. Chromosomal instability selects gene copy-number variants encoding core regulators of proliferation in ER+ breast cancer. Cancer Res. 74, 4853–4863 (2014).
pubmed: 24970479
pmcid: 4167338
doi: 10.1158/0008-5472.CAN-13-2664
Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294 (2019).
pubmed: 30849372
pmcid: 6424819
doi: 10.1016/j.cell.2019.02.012
Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).
pubmed: 32532990
pmcid: 7293259
doi: 10.1038/s41467-020-16802-8
Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47, 1067–1072 (2015).
pubmed: 26258849
pmcid: 4594173
doi: 10.1038/ng.3378
Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science https://doi.org/10.1126/science.aaw2872 (2019).
Ito, F., Fu, Y., Kao, S. A., Yang, H. & Chen, X. S. Family-wide comparative analysis of cytidine and methylcytidine deamination by eleven human APOBEC proteins. J. Mol. Biol. 429, 1787–1799 (2017).
pubmed: 28479091
pmcid: 5530319
doi: 10.1016/j.jmb.2017.04.021
Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807 (2022).
pubmed: 35859169
pmcid: 9329121
doi: 10.1038/s41586-022-04972-y
Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).
pubmed: 29151359
doi: 10.1056/NEJMoa1713137
Sharma, S. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 6, 6881 (2015).
pubmed: 25898173
doi: 10.1038/ncomms7881
Sharma, S., Patnaik, S. K., Kemer, Z. & Baysal, B. E. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol. 14, 603–610 (2017).
pubmed: 27149507
doi: 10.1080/15476286.2016.1184387
Sharma, S. & Baysal, B. E. Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G. PeerJ 5, e4136 (2017).
pubmed: 29230368
pmcid: 5723131
doi: 10.7717/peerj.4136
Oh, S. & Buisson, R. A digital PCR-based protocol to detect and quantify RNA editing events at hotspots. STAR Protoc. 3, 101148 (2022).
pubmed: 35284835
pmcid: 8915000
doi: 10.1016/j.xpro.2022.101148
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).
pubmed: 28498782
doi: 10.1200/JCO.2016.71.9096
Offin, M. et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J. Thorac. Oncol. 14, 1784–1793 (2019).
pubmed: 31228622
pmcid: 6764905
doi: 10.1016/j.jtho.2019.06.002
Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6, 6377 (2015).
pubmed: 25758528
doi: 10.1038/ncomms7377
Piotrowska, Z. et al. Heterogeneity and coexistence of T790M and T790 wild-type resistant subclones drive mixed response to third-generation epidermal growth factor receptor inhibitors in lung cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00263 (2018).
Oh, S. et al. Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nat. Commun. 12, 4917 (2021).
pubmed: 34389714
pmcid: 8363607
doi: 10.1038/s41467-021-25203-4
Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).
pubmed: 21430781
pmcid: 3541675
doi: 10.1038/nature09870
Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep. 11, 98–110 (2015).
pubmed: 25843712
pmcid: 4394036
doi: 10.1016/j.celrep.2015.03.012
Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).
pubmed: 23446422
pmcid: 4636055
doi: 10.1038/nature11935
Choudhury, N. J. et al. Molecular biomarkers of disease outcomes and mechanisms of acquired resistance to first-line osimertinib in advanced EGFR-mutant lung cancers. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2022.11.022 (2022).
Grillo, M. J., Jones, K. F. M., Carpenter, M. A., Harris, R. S. & Harki, D. A. The current toolbox for APOBEC drug discovery. Trends Pharmacol. Sci. 43, 362–377 (2022).
pubmed: 35272863
pmcid: 9018551
doi: 10.1016/j.tips.2022.02.007
Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).
pubmed: 25394791
pmcid: 4388482
doi: 10.1126/science.1254721
Bailey, M. H. et al. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat. Commun. 11, 4748 (2020).
pubmed: 32958763
pmcid: 7505971
doi: 10.1038/s41467-020-18151-y
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505
pmcid: 2828108
doi: 10.1093/bioinformatics/btp698
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013
pmcid: 3833702
doi: 10.1038/nbt.2514
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Lin, J. J. et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. NPJ Precis. Oncol. 4, 21 (2020).
pubmed: 32802958
pmcid: 7400592
doi: 10.1038/s41698-020-0127-9
Dardaei, L. et al. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med. 24, 512–517 (2018).
pubmed: 29505033
pmcid: 6343825
doi: 10.1038/nm.4497
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567
pmcid: 3919509
doi: 10.1038/nature12213
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).
pubmed: 24390350
pmcid: 4048962
doi: 10.1038/nature12912
Ellrott, K. et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 6, 271–281 (2018).
pubmed: 29596782
pmcid: 6075717
doi: 10.1016/j.cels.2018.03.002
Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res. 23, 228–235 (2013).
pubmed: 23124520
pmcid: 3561864
doi: 10.1101/gr.141382.112
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
pubmed: 19541911
pmcid: 2752132
doi: 10.1101/gr.092759.109
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090
pmcid: 5623106
doi: 10.1038/nmeth.4396
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Chen, Y., Lun, A. T. & Smyth, G. K. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5, 1438 (2016).
pubmed: 27508061
pmcid: 4934518
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706
pmcid: 5623146
doi: 10.1038/nmeth.4401
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473
doi: 10.1093/nar/gkx1126
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975
pmcid: 4987876
doi: 10.1093/nar/gkw257
Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res. 77, 4567–4578 (2017).
pubmed: 28698210
pmcid: 5609510
doi: 10.1158/0008-5472.CAN-16-3389
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D. & Clement, M. V. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2, 457–465 (2014).
pubmed: 24624335
pmcid: 3949099
doi: 10.1016/j.redox.2013.12.020
Raoof, S. et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene 38, 6399–6413 (2019).
pubmed: 31324888
pmcid: 6742540
doi: 10.1038/s41388-019-0887-2