N-terminal alanine-rich (NTAR) sequences drive precise start codon selection resulting in elevated translation of multiple proteins including ERK1/2.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
25 08 2023
Historique:
accepted: 12 06 2023
received: 08 09 2022
medline: 28 8 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: ppublish

Résumé

We report the discovery of N-terminal alanine-rich sequences, which we term NTARs, that act in concert with their native 5'-untranslated regions to promote selection of the proper start codon. NTARs also facilitate efficient translation initiation while limiting the production of non-functional polypeptides through leaky scanning. We first identified NTARs in the ERK1/2 kinases, which are among the most important signaling molecules in mammals. Analysis of the human proteome reveals that hundreds of proteins possess NTARs, with housekeeping proteins showing a particularly high prevalence. Our data indicate that several of these NTARs act in a manner similar to those found in the ERKs and suggest a mechanism involving some or all of the following features: alanine richness, codon rarity, a repeated amino acid stretch and a nearby second AUG. These features may help slow down the leading ribosome, causing trailing pre-initiation complexes (PICs) to pause near the native AUG, thereby facilitating accurate translation initiation. Amplification of erk genes is frequently observed in cancer, and we show that NTAR-dependent ERK protein levels are a rate-limiting step for signal output. Thus, NTAR-mediated control of translation may reflect a cellular need to precisely control translation of key transcripts such as potential oncogenes. By preventing translation in alternative reading frames, NTAR sequences may be useful in synthetic biology applications, e.g. translation from RNA vaccines. Initiation of translation is essential for protein synthesis. A crucial step is the correct choice of the start AUG, which leads to the production of the fully functional polypeptide. To date, nucleotide composition next to the AUG has been considered the only determinant of start codon selection. Our work identifies a large family of proteins whose start codon choice is determined by an N-terminal alanine-rich sequence (NTAR) that enables efficient protein translation. Many of these proteins are encoded by housekeeping genes. Among them, the NTARs of the pivotal kinases ERK1 and ERK2 are highly optimized in humans, shaping ERK signal transduction by increasing the kinase quantity. Our findings could be useful for applied biology, especially for mRNA-based therapeutics.

Autres résumés

Type: plain-language-summary (eng)
Initiation of translation is essential for protein synthesis. A crucial step is the correct choice of the start AUG, which leads to the production of the fully functional polypeptide. To date, nucleotide composition next to the AUG has been considered the only determinant of start codon selection. Our work identifies a large family of proteins whose start codon choice is determined by an N-terminal alanine-rich sequence (NTAR) that enables efficient protein translation. Many of these proteins are encoded by housekeeping genes. Among them, the NTARs of the pivotal kinases ERK1 and ERK2 are highly optimized in humans, shaping ERK signal transduction by increasing the kinase quantity. Our findings could be useful for applied biology, especially for mRNA-based therapeutics.

Identifiants

pubmed: 37414542
pii: 7220106
doi: 10.1093/nar/gkad528
pmc: PMC10450180
doi:

Substances chimiques

Alanine OF5P57N2ZX
Codon 0
Codon, Initiator 0
RNA, Messenger 0
Viral Proteins 0
Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7714-7735

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Cell Metab. 2015 Mar 3;21(3):479-92
pubmed: 25738462
Cell. 2010 Apr 16;141(2):355-67
pubmed: 20403329
Trends Biochem Sci. 2009 Jan;34(1):16-24
pubmed: 18996013
Mol Endocrinol. 1992 May;6(5):845-54
pubmed: 1603090
J Cell Biol. 2004 Oct 11;167(1):27-33
pubmed: 15479734
Oncogene. 2001 Jul 27;20(33):4596-600
pubmed: 11494157
J Neurosci. 2008 Jul 2;28(27):6983-95
pubmed: 18596172
Nat Commun. 2022 Dec 2;13(1):7451
pubmed: 36460666
Cell. 2020 Oct 1;183(1):269-283.e19
pubmed: 32916130
J Biol Chem. 1997 Aug 22;272(34):21575-81
pubmed: 9261178
Cell. 1997 Sep 5;90(5):859-69
pubmed: 9298898
Cell. 2010 Oct 15;143(2):251-62
pubmed: 20946983
Cell. 2014 Oct 23;159(3):597-607
pubmed: 25417110
J Biol Chem. 1995 Nov 10;270(45):26986-92
pubmed: 7592946
J Cell Biol. 2000 Jul 10;150(1):275-81
pubmed: 10893274
Biochem J. 2001 Apr 15;355(Pt 2):389-95
pubmed: 11284726
Cell. 2011 Nov 11;147(4):789-802
pubmed: 22056041
Bioinformatics. 2005 Apr 1;21(7):837-40
pubmed: 15531618
Nat Genet. 2016 Jun;48(6):607-16
pubmed: 27158780
J Mol Biol. 1982 May 5;157(1):105-32
pubmed: 7108955
EMBO J. 1994 Jul 1;13(13):3003-10
pubmed: 8039496
J Cell Biol. 1993 Sep;122(5):1079-88
pubmed: 8394845
Trends Genet. 2013 Oct;29(10):569-74
pubmed: 23810203
Proc Natl Acad Sci U S A. 1990 Nov;87(21):8301-5
pubmed: 2236042
Mol Biol Cell. 1992 Jan;3(1):63-71
pubmed: 1372523
Oncogene. 1994 Apr;9(4):1273-8
pubmed: 8134131
Science. 2016 Oct 14;354(6309):233-237
pubmed: 27738173
Cell. 1986 Jan 31;44(2):283-92
pubmed: 3943125
Nat Genet. 1998 Feb;18(2):164-7
pubmed: 9462747
Annu Rev Biochem. 2014;83:779-812
pubmed: 24499181
Endocr Rev. 2018 Oct 1;39(5):676-700
pubmed: 29924299
Cell. 1995 Jan 27;80(2):179-85
pubmed: 7834738
Mol Cell Biol. 2008 Jan;28(1):511-27
pubmed: 17967895
Front Mol Biosci. 2021 Feb 26;8:626837
pubmed: 33718433
Mol Cell Biol. 2004 Sep;24(17):7622-35
pubmed: 15314170
Proc Natl Acad Sci U S A. 1986 May;83(9):2850-4
pubmed: 3458245
J Cell Biol. 2000 Mar 6;148(5):849-56
pubmed: 10704436
Oncogene. 2002 Sep 19;21(42):6413-24
pubmed: 12226745
PLoS One. 2008;3(11):e3647
pubmed: 18985154
Science. 2016 Jun 17;352(6292):1413-6
pubmed: 27313038
Wiley Interdiscip Rev RNA. 2018 Mar;9(2):
pubmed: 29193740
Anal Biochem. 2006 Sep 1;356(1):94-9
pubmed: 16750160
EMBO J. 2000 Jun 15;19(12):2900-10
pubmed: 10856235
Int J Mol Sci. 2019 May 21;20(10):
pubmed: 31117237
Trends Biochem Sci. 2006 May;31(5):268-75
pubmed: 16603362
Development. 2018 Jul 26;145(14):
pubmed: 30049820
Biophys J. 2021 Nov 2;120(21):4798-4808
pubmed: 34555360
Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7158-61
pubmed: 7638160
BMC Evol Biol. 2015 Sep 03;15:179
pubmed: 26336084
BMC Genomics. 2006 Feb 16;7:28
pubmed: 16483368
EMBO Rep. 2000 Jul;1(1):18-23
pubmed: 11256617
Nucleic Acids Res. 2012 Apr;40(7):2898-906
pubmed: 22156057
Nature. 2011 May 19;473(7347):337-42
pubmed: 21593866
PLoS One. 2008 Aug 28;3(8):e3094
pubmed: 18769482
Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632
pubmed: 32576977
Nat Cell Biol. 2002 Aug;4(8):556-64
pubmed: 12134156
Front Cell Dev Biol. 2016 Jun 08;4:53
pubmed: 27376062
Hum Genet. 2017 Jan;136(1):67-74
pubmed: 27726012
Mol Cell. 2022 Apr 21;82(8):1451-1466
pubmed: 35452614
Cell. 2010 Apr 16;141(2):344-54
pubmed: 20403328
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9):
pubmed: 35217614
J Cell Sci. 2001 Oct;114(Pt 19):3433-43
pubmed: 11682603
Cancer Discov. 2012 Oct;2(10):934-47
pubmed: 22961667
Neurobiol Dis. 2009 Jun;34(3):397-405
pubmed: 19269323
Nucleic Acids Res. 2008 Feb;36(3):861-71
pubmed: 18086709

Auteurs

Roser Buscà (R)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.

Cercina Onesto (C)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.
Polytech'Nice Sophia, Bioengineering Department, Sophia-Antipolis, France.

Mylène Egensperger (M)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.

Jacques Pouysségur (J)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.
Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco.

Gilles Pagès (G)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.
Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco.

Philippe Lenormand (P)

Université Côte d'Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France.
Centre Antoine Lacassagne, Nice, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH