Comparative DFT study of methanol decomposition on Mo
Decomposition
Density functional theory
Methanol
Mo2C catalyst
Journal
Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569
Informations de publication
Date de publication:
06 Jul 2023
06 Jul 2023
Historique:
received:
09
03
2023
accepted:
21
06
2023
medline:
10
7
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
epublish
Résumé
In this study, the complete reaction mechanism of methanol decomposition on metallic Mo All calculations were performed by using the plane-wave based periodic method implemented in Vienna ab initio simulation package (VASP, version 5.3.5), where the ionic cores are described by the projector augmented wave (PAW) method. The exchange and correlation energies were computed using the Perdew, Burke and Ernzerhof functional with the latest dispersion correction (PBE-D3).
Identifiants
pubmed: 37414901
doi: 10.1007/s00894-023-05631-3
pii: 10.1007/s00894-023-05631-3
doi:
Substances chimiques
Methanol
Y4S76JWI15
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
233Subventions
Organisme : Natural Science Foundation of Linyi University
ID : LYDX2018BS004
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Akhter S, White JM (1986) A static SIMS/TPD study of the kinetics of methoxy formation and decomposition on O/Pt(111). Surf Sci 167:101–126
Gibson KD, Dubois LD (1990) Step effects in the thermal decomposition of methanol on Pt(111). Surf Sci 233:59–64
Desai SK, Neurock M, Kourtakis K (2002) A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). J Phys Chem B 106:2559–2568
Gasper RJ, Ramasubramaniam A (2016) Density functional theory studies of the methanol decomposition reaction on graphene-supported Pt
Tomaschun G, Kluner T (2019) Methanol oxidation on the Pt(321) surface: a theoretical approach on the role of surface morphology and surface coverage effects. Phys Chem Chem Phys 21:18227–18239
pubmed: 31393474
Jiang Z, Wang B, Fang T (2016) A theoretical study on the complete dehydrogenation of methanol on Pd(100) surface. Appl Surf Sci 364:613–619
Carraro F, Fapohunda A, Maria CP, Agnoli S (2018) Morphology and size effect of ceria nanostructures on the catalytic performances of Pd/CeO
Kruse N, Rebholz M, Matolin V, Chuah GK, Block JH (1990) Methanol decomposition on Pd(111) single crystal surfaces. Surf Sci 238:L457–L462
Jiang R, Guo W, Li M, Fu D, Shan H (2009) Density functional investigation of methanol dehydrogenation on Pd(111). J Phys Chem C 113:4188–4197
Jiang R, Guo W, Li M, Lu X, Yuan J, Shan H (2010) A theoretical study on the complete dehydrogenation of methanol on Pd(100) surface. Phys Chem Chem Phys 12:7794–7803
pubmed: 20485803
Zhang M, Wu X, Yu Y (2018) A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110). Appli Surf Sci 436:268–276
Jiang R, Guo W, Li M, Zhu H, Zhao L, Lu X, Shan H (2011) Methanol dehydrogenation on Rh(111): A density functional and microkinetic modeling study. J Mol Catal A Chem 344:99–110
Solymosi F, Berkó A, Tarnóczi TI (1984) Adsorption and decomposition of methanol on Rh(111) studied by electron energy loss and thermal desorption spectroscopy. Surf Sci 141:533–548
Parmeter JE, Jiang XD, Goodman DW (1990) The adsorption and decomposition of methanol on the Rh(100) surface. Surf Sci 240:85–100
Pagliaro MV, Bellini M, Filippi J, Folliero MG, Marchionni A, Miller H (2018) Hydrogen production from the electrooxidation of methanol and potassium formate in alkaline media on carbon supported Rh and Pd nanoparticles. Inorg Chim Acta 470:263–269
Lu X, Wang W, Deng Z, Zhu H, Wei S, Ng SP, Guo W, Wu CM (2016) Methanol oxidation on Ru(0001) for direct methanol fuel cells: analysis of the competitive reaction mechanism. RSC Adv 6:1729–1737
Moura AS, Fajín JL, Pinto AS, Mandado M, Cordeiro MNDS (2015) Competitive paths for methanol decomposition on ruthenium: a DFT study. J Phys Chem C 119:27382–27391
Barros RB, Garcia AR, Ilharco LM (2004) Effect of oxygen precoverage on the reactivity of methanol on Ru(001) surfaces. J Phys Chem B 108:4831–4839
Greeley J, Mavrikakis M (2002) Methanol decomposition on Cu(111): a DFT study. J Catal 208:291–300
Mei D, Xu L, Henkelman G (2009) Potential energy surface of methanol decomposition on Cu(110). J Phys Chem C 113:4522–4537
Zuo Z, Wang L, Han P, Huang W (2014) Insights into the reaction mechanisms of methanol decomposition, methanol oxidation and steam reforming of methanol on Cu(111): a density functional theory study. Int J Hydrogen Energy 39:1664–1679
Garcı́a-Muelas R, Li Q, López N (2015) Density functional theory comparison of methanol decomposition and reverse reactions on metal surfaces. ACS Catal 5:1027–1036
Upton TH (1982) Theoretical studies of the decomposition of methanol on Ni(100). J Vac Sci Tchnol 20:527–531
Wang GC, Zhou YH, Morikawa Y, Nakamura J, Cai ZS, Zhao XZ (2005) Kinetic mechanism of methanol decomposition on Ni(111) Surface: a theoretical study. J Phys Chem B 109:12431
pubmed: 16852538
Azenha C, Lagarteira T, Mateos-Pedrero C, Mendes A (2021) Production of hydrogen from methanol steam reforming using CuPd/ZrO
Azenha CS, Mateos-Pedrero C, Queirós S, Concepción P, Mendes A (2017) Innovative ZrO
Du P, Gao Y, Wu P, Cai C (2018) Exploring the methanol decomposition mechanism on the Pt
pubmed: 29589617
Du P, Wu P, Cai C (2017) Mechanism of methanol decomposition on the Pt
Liao T, Yadav A, Ferrari P, Niu Y, Wei X, Vernieres J, Hu K, Heggen M, Dunin-Borkowski R, Palmer R, Laasonen K, Grandjean D, Janssens E, Lievens P (2019) Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts. Chem Mater 31:10040–10048
Damte JY, Lyu SL, Leggesse EG, Jiang JC (2018) Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst. Phys Chem Chem Phys 20:9355–9363
pubmed: 29564450
Shao ZG, Zhu F, Lin WF, Christensen PA, Zhang H (2006) PtRu/Ti anodes with varying Pt: Ru ratio prepared by electrodeposition for the direct methanol fuel cell. Phys Chem Chem Phys 8:2720–2726
pubmed: 16763704
Koós A, Barthos R, Solymosi F (2008) Reforming of methanol on a K-promoted Mo
Ma YF, Guan GQ, Phanthong P, Hao X, Huang W, Tsutsumi A, Kusakabe K, Abudula A (2014) Catalytic activity and stability of nickel-modified molybdenum carbide catalysts for steam reforming of methanol. J Phys Chem C 118:9485–9496
Barthos R, Solymosi F (2007) Hydrogen production in the decomposition and steam reforming of methanol on Mo
Lin SS, Thomson WJ, Hagensen TJ, Ha SY (2007) Steam reforming of methanol using supported Mo
Pistonesi C, Juan A, Farkas AP, Solymosi F (2008) DFT study of methanol adsorption and dissociation on β-Mo
Farkas AP, Solymosi F (2008) Effects of potassium on the adsorption and dissociation pathways of methanol and ethanol on Mo
Gao Q, Zhang C, Wang S, Shen W, Zhang Y, Xu H, Tang Y (2010) Preparation of supported Mo
Széchenyi A, Solymosi F (2007) Production of hydrogen in the decomposition of ethanol and methanol over unsupported Mo
Chen C, Lee W, Bhan A (2016) Mo
Lugo-José YK, Monnier JR, Williams CT (2014) Gas-phase, catalytic hydrodeoxygenation of propanoic acid, over supported group VIII noble metals: metal and support effects. Appl Catal A General 469:410–418
Shi Y, Yang Y, Li YW, Jiao H (2016) Theoretical study about Mo
Wang H, Liu S, Smith KJ (2019) Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo
Liu P, Rodriguez JA, Muckerman JT (2004) Desulfurization of SO
Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) Desulfurization reactions on Ni
pubmed: 16851535
Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50
Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186
Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979
Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
pubmed: 10062328
Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H−Pu. J Chem Phys 132:154104
pubmed: 20423165
Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465
pubmed: 21370243
Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904
Wang T, Wang J, Matthias B, Jiao H (2014) Dissociative hydrogen adsorption on the hexagonal Mo
Dubois J, Epicier T, Esnouf C, Fantozzi G, Convert P (1988) Neutron powder diffraction studies of transition metal hemicarbides M
Epicier T, Dubois J, Esnouf C, Fantozzi G, Convert P (1988) Neutron powder diffraction studies of transition metal hemicarbide M
Wang T, Liu XW, Wang SG, Huo CF, Li YW, Wang J, Jiao H (2011) Stability of β-Mo
Wang F, Li T, Jiao H (2019) Nitridation of the metallic Mo
Fries RJ, Kempter CP (1960) Dimolybdenum carbide. Anal Chem 32:1898
Han JR, Li LW, Sholl DS (2011) Density functional theory study of H and CO adsorption on alkali-promoted Mo
Jing JJ, Li QH, Wang J, Liu D, Wu K (2019) Theoretical study of the reverse water gas shift reaction on copper modified β-Mo
Haines J, Léger J, Chateau C, Lowther J (2011) Experimental and theoretical investigation of Mo
Miyao T, Shishikura I, Matsuoka M, Nagai M, Oyama S (1997) Preparation and characterization of alumina-supported molybdenum carbide. Appl Catal A 165:419–428
Ranhotra G, Bell A, Reimer J (1987) Catalysis over molybdenum carbides and nitrides: II. studies of CO hydrogenation and C
Hanif A, Xiao T, York AP, Sloan J, Green ML (2002) Study on the structure and formation mechanism of molybdenum carbides. Chem Mater 14:1009–1015
Wang F, Li T, Shi Y, Jiao H (2020) Molybdenum carbide supported metal catalysts (M
Shi Y, Yang Y, Li YW, Jiao H (2016) Activation mechanisms of H
Pallassana V, Neurock M (2000) Electronic factors governing ethylene hydrogenation and dehydrogenation activity of pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) surfaces. J Catal 191:301–317
Loffreda D, Delbecq F, Vigné F, Sautet P (2009) Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted–Evans–Polanyi relations: a theoretical insight. Angew Chem Int Ed 48:8978–8980
Xing SK, Wang GC (2013) Reaction mechanism of ethanol decomposition on Mo
Wang HF, Liu ZP (2008) Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J Am Chem Soc 130:10996–11004
pubmed: 18642913
Liu B, Greeley J (2011) Decomposition pathways of glycerol via C−H, O−H, and C−C Bond scission on Pt(111): a density functional theory study. J Phys Chem C 115:19702–19709
Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115
Lu JM, Behtash S, Faheem M, Heyden A (2013) Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(111) model surfaces based on parameters obtained from first principles. J Catal 305:56–66
Shi Y, Yang Y, Li YW, Jiao H (2016) Mechanisms of Mo
Shi Y (2019) Theoretical study of the mechanism of furfural conversion on the NiCuCu(111) surface. ACS Omega 4:17447–17456
pubmed: 31656917
pmcid: 6812123
Shi Y (2020) Exploring the reaction mechanisms of furfural hydrodeoxygenation on a CuNiCu(111) bimetallic catalyst surface from computation. ACS Omega 5:18040–18049
pubmed: 32743178
pmcid: 7393643