Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
08 2023
Historique:
received: 03 02 2023
accepted: 15 05 2023
medline: 31 7 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: ppublish

Résumé

Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.

Identifiants

pubmed: 37414906
doi: 10.1038/s41590-023-01544-8
pii: 10.1038/s41590-023-01544-8
doi:

Substances chimiques

Immunoglobulin G 0
Epitopes 0

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1244-1255

Subventions

Organisme : Cancer Research UK
ID : 24721
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : U01 AI148119
Pays : United States
Organisme : Cancer Research UK
ID : A20537
Pays : United Kingdom
Organisme : Cancer Research UK
ID : DRCDDRPGM-Apr2020\100005
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A24721
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : U01 AI148153
Pays : United States

Commentaires et corrections

Type : ErratumIn
Type : ErratumIn

Informations de copyright

© 2023. Springer Nature America, Inc.

Références

Ding, L., Chen, X., Cheng, H., Zhang, T. & Li, Z. Advances in IgA glycosylation and its correlation with diseases. Front. Chem. 10, 974854 (2022).
pubmed: 36238099 pmcid: 9552352 doi: 10.3389/fchem.2022.974854
Shade, K. T., Conroy, M. E. & Anthony, R. M. IgE glycosylation in health and disease. Curr. Top. Microbiol Immunol. 423, 77–93 (2019).
pubmed: 30820668 pmcid: 6750212
Sun, Y., Li, X., Wang, T. & Li, W. Core fucosylation regulates the function of pre-BCR, BCR and IgG in humoral immunity. Front. Immunol. 13, 844427 (2022).
pubmed: 35401499 pmcid: 8990897 doi: 10.3389/fimmu.2022.844427
Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).
pubmed: 25045879 pmcid: 7430760 doi: 10.1038/ni.2939
Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).
pubmed: 25368619 pmcid: 4202688 doi: 10.3389/fimmu.2014.00520
Challa, D. K., Velmurugan, R., Ober, R. J. & Sally Ward, E. FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr. Top. Microbiol Immunol. 382, 249–272 (2014).
pubmed: 25116104
Nimmerjahn, F. & Ravetch, J. V. Four keys to unlock IgG. J. Exp. Med. 218, e20201753 (2021).
pubmed: 33600555 pmcid: 7888349 doi: 10.1084/jem.20201753
Black, C. A. A brief history of the discovery of the immunoglobulins and the origin of the modern immunoglobulin nomenclature. Immunol. Cell Biol. 75, 65–68 (1997).
pubmed: 9046436 doi: 10.1038/icb.1997.10
Lefranc, G. et al. Simultaneous absence of the human IgG1, IgG2, IgG4 and IgA1 subclasses: immunological and immunogenetical considerations. Eur. J. Immunol. 13, 240–244 (1983).
pubmed: 6832214 doi: 10.1002/eji.1830130312
Pan, Q. & Hammarstrom, L. Molecular basis of IgG subclass deficiency. Immunol. Rev. 178, 99–110 (2000).
pubmed: 11213812 doi: 10.1034/j.1600-065X.2000.17815.x
Jefferis, R. & Lefranc, M. P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1, 332–338 (2009).
pubmed: 20073133 pmcid: 2726606 doi: 10.4161/mabs.1.4.9122
de Taeye, S. W. et al. FcγR binding and ADCC activity of human IgG allotypes. Front. Immunol. 11, 740 (2020).
pubmed: 32435243 pmcid: 7218058 doi: 10.3389/fimmu.2020.00740
Labrijn, A. F. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 27, 767–771 (2009).
pubmed: 19620983 doi: 10.1038/nbt.1553
Orr, C. M. et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci. Immunol. 7, eabm3723 (2022). This study demonstrates how hinge disulfide orientation regulates agonistic IgG2 activity.
pubmed: 35857577 doi: 10.1126/sciimmunol.abm3723
Gordan, S., Biburger, M. & Nimmerjahn, F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol. Rev. 268, 52–65 (2015).
pubmed: 26497512 doi: 10.1111/imr.12347
Kerntke, C., Nimmerjahn, F. & Biburger, M. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 11, 118 (2020).
pubmed: 32117269 pmcid: 7013094 doi: 10.3389/fimmu.2020.00118
Vorsatz, C., Friedrich, N., Nimmerjahn, F. & Biburger, M. There is strength in numbers: quantitation of Fc gamma receptors on murine tissue-resident macrophages. Int. J. Mol. Sci. 22, 12172 (2021).
pubmed: 34830050 pmcid: 8620503 doi: 10.3390/ijms222212172
Kaplon, H., Chenoweth, A., Crescioli, S. & Reichert, J. M. Antibodies to watch in 2022. MAbs 14, 2014296 (2022).
pubmed: 35030985 pmcid: 8765076 doi: 10.1080/19420862.2021.2014296
Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl Acad. Sci. USA 116, 4025–4030 (2019).
pubmed: 30765520 pmcid: 6410772 doi: 10.1073/pnas.1810576116
Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014).
pubmed: 24626930 pmcid: 4250092 doi: 10.1126/science.1248943
van den Bremer, E. T. et al. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation. MAbs 7, 672–680 (2015).
pubmed: 26037225 pmcid: 4622059 doi: 10.1080/19420862.2015.1046665
Burmeister, W. P., Huber, A. H. & Bjorkman, P. J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379–383 (1994).
pubmed: 7969498 doi: 10.1038/372379a0
Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).
pubmed: 33087899 doi: 10.1038/s41580-020-00294-x
Grinnell, S., Yoshida, K. & Jasin, H. E. Responses of lymphocytes of patients with rheumatoid arthritis to IgG modified by oxygen radicals or peroxynitrite. Arthritis Rheum. 52, 80–83 (2005).
pubmed: 15641043 doi: 10.1002/art.20760
More, A. S. et al. Impact of glycosylation on the local backbone flexibility of well-defined IgG1-Fc glycoforms using hydrogen exchange-mass spectrometry. J. Pharm. Sci. 107, 2315–2324 (2018).
pubmed: 29751008 pmcid: 6089645 doi: 10.1016/j.xphs.2018.04.026
Lu, X. et al. Characterization of IgG1 Fc deamidation at asparagine 325 and its impact on antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. Sci. Rep. 10, 383 (2020).
pubmed: 31941950 pmcid: 6962426 doi: 10.1038/s41598-019-57184-2
Klaric, L. et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 6, eaax0301 (2020). This study identifies several genetic pathways associated with differential IgG glycosylation in humans.
pubmed: 32128391 pmcid: 7030929 doi: 10.1126/sciadv.aax0301
Lu, J. et al. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc. Natl Acad. Sci. USA 112, 833–838 (2015).
pubmed: 25561553 pmcid: 4311811 doi: 10.1073/pnas.1418812112
Subedi, G. P. & Barb, A. W. The structural role of antibody N-glycosylation in receptor interactions. Structure 23, 1573–1583 (2015).
pubmed: 26211613 pmcid: 4558368 doi: 10.1016/j.str.2015.06.015
Einarsdottir, H. K. et al. Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. Glycoconj. J. 30, 147–157 (2013).
pubmed: 22572841 doi: 10.1007/s10719-012-9381-6
Falck, D. et al. Glycoform-resolved pharmacokinetic studies in a rat model employing glyco-engineered variants of a therapeutic monoclonal antibody. MAbs 13, 1865596 (2021).
pubmed: 33382957 doi: 10.1080/19420862.2020.1865596
Kao, D. et al. A monosaccharide residue is sufficient to maintain mouse and human IgG subclass activity and directs IgG effector functions to cellular Fc receptors. Cell Rep. 13, 2376–2385 (2015).
pubmed: 26670049 doi: 10.1016/j.celrep.2015.11.027
Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, 2–9 (2021). Together with ref.
doi: 10.1126/science.abc8378
de Haan, N. et al. The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front Immunol. 8, 608 (2017).
pubmed: 28620376 pmcid: 5449507 doi: 10.3389/fimmu.2017.00608
Kao, D. et al. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur. J. Immunol. 47, 2070–2079 (2017).
pubmed: 28771702 doi: 10.1002/eji.201747208
Zaytseva, O. O. et al. Fc-linked IgG N-glycosylation in FcγR knock-out mice. Front Cell Dev. Biol. 8, 67 (2020).
pubmed: 32195245 pmcid: 7063467 doi: 10.3389/fcell.2020.00067
Dekkers, G. et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc receptor- and complement-mediated-effector activities. Front. Immunol. 8, 877 (2017).
pubmed: 28824618 pmcid: 5539844 doi: 10.3389/fimmu.2017.00877
Barb, A. W. & Prestegard, J. H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol. 7, 147–153 (2011).
pubmed: 21258329 pmcid: 3074608 doi: 10.1038/nchembio.511
Oswald, D. M. et al. ST6Gal1 in plasma is dispensable for IgG sialylation. Glycobiology 32, 803–813 (2022).
pubmed: 35746897 pmcid: 9387507
Schaffert, A. et al. Minimal B cell extrinsic IgG glycan modifications of pro- and anti-inflammatory IgG preparations in vivo. Front. Immunol. 10, 3024 (2019).
pubmed: 31998308 doi: 10.3389/fimmu.2019.03024
Kapur, R. et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 123, 471–480 (2014).
pubmed: 24243971 pmcid: 3901064 doi: 10.1182/blood-2013-09-527978
Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).
pubmed: 17029568 doi: 10.1146/annurev.immunol.25.022106.141702
Bakovic, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).
pubmed: 23298168 doi: 10.1021/pr300887z
Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).
pubmed: 28239652 pmcid: 5313059 doi: 10.1172/jci.insight.89703
Mijakovac, A. et al. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front. Immunol. 12, 680227 (2021).
pubmed: 34113353 pmcid: 8186398 doi: 10.3389/fimmu.2021.680227
van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).
pubmed: 20015375 pmcid: 3003510 doi: 10.1186/ar2892
Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).
pubmed: 12427744 doi: 10.1074/jbc.M210665200
Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. MAbs 8, 1512–1524 (2016).
pubmed: 27492264 pmcid: 5098437 doi: 10.1080/19420862.2016.1218586
Falconer, D. J., Subedi, G. P., Marcella, A. M. & Barb, A. W. Antibody fucosylation lowers the FcγRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chem. Biol. 13, 2179–2189 (2018).
pubmed: 30016589 pmcid: 6415948 doi: 10.1021/acschembio.8b00342
Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).
pubmed: 21768335 pmcid: 3150898 doi: 10.1073/pnas.1108455108
Lippold, S. et al. Glycoform-resolved FcɣRIIIa affinity chromatography-mass spectrometry. MAbs 11, 1191–1196 (2019).
pubmed: 31276431 pmcid: 6748599 doi: 10.1080/19420862.2019.1636602
Bruggeman, C. W. et al. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J. Immunol. 199, 204–211 (2017).
pubmed: 28566370 doi: 10.4049/jimmunol.1700116
Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).
pubmed: 16322460 doi: 10.1126/science.1118948
Temming, A. R. et al. Functional attributes of antibodies, effector cells, and target cells affecting NK cell-mediated antibody-dependent cellular cytotoxicity. J. Immunol. 203, 3126–3135 (2019).
pubmed: 31748349 doi: 10.4049/jimmunol.1900985
Patel, K. R., Roberts, J. T. & Barb, A. W. Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 30, 427–432 (2020).
pubmed: 31967297 pmcid: 7305797 doi: 10.1093/glycob/cwaa002
Patel, K. R., Roberts, J. T., Subedi, G. P. & Barb, A. W. Restricted processing of CD16a/Fc gamma receptor IIIa N-glycans from primary human NK cells impacts structure and function. J. Biol. Chem. 293, 3477–3489 (2018).
pubmed: 29330305 pmcid: 5846152 doi: 10.1074/jbc.RA117.001207
Van Coillie, J. et al. Role of N-glycosylation in FcRIIIa interaction with IgG. Front Immunol. 13, 987151 (2022).
pubmed: 36189205 pmcid: 9524020 doi: 10.3389/fimmu.2022.987151
Kapur, R. et al. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166, 936–945 (2014).
pubmed: 24909983 pmcid: 4282073 doi: 10.1111/bjh.12965
Kapur, R. et al. Prophylactic anti-D preparations display variable decreases in Fc-fucosylation of anti-D. Transfusion 55, 553–562 (2015).
pubmed: 25234110 doi: 10.1111/trf.12880
Wuhrer, M. et al. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J. Proteome Res 8, 450–456 (2009).
pubmed: 18942870 doi: 10.1021/pr800651j
Sonneveld, M. E. et al. Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br. J. Haematol. 174, 310–320 (2016).
pubmed: 27017954 doi: 10.1111/bjh.14053
Bharadwaj, P. et al. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep. Med. 3, 100818 (2022).
pubmed: 36384101 pmcid: 9729883 doi: 10.1016/j.xcrm.2022.100818
van Osch, T. L. J. et al. Altered Fc glycosylation of anti-HLA alloantibodies in hemato-oncological patients receiving platelet transfusions. J. Thromb. Haemost. 20, 3011–3025 (2022).
pubmed: 36165642 pmcid: 9828502 doi: 10.1111/jth.15898
Hoepel, W. et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 13, eabf8654 (2021). In combination with refs.
pubmed: 33979301 doi: 10.1126/scitranslmed.abf8654
Larsen, M. D. et al. Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat. Commun. 12, 5838 (2021).
pubmed: 34611164 pmcid: 8492741 doi: 10.1038/s41467-021-26118-w
Oosterhoff, J. J., Larsen, M. D., van der Schoot, C. E. & Vidarsson, G. Afucosylated IgG responses in humans—structural clues to the regulation of humoral immunity. Trends Immunol. 43, 800–814 (2022).
pubmed: 36008258 pmcid: 9395167 doi: 10.1016/j.it.2022.08.001
Thulin, N. K. et al. Maternal anti-dengue IgG fucosylation predicts susceptibility to dengue disease in infants. Cell Rep. 31, 107642 (2020). Together with ref.
pubmed: 32402275 pmcid: 7344335 doi: 10.1016/j.celrep.2020.107642
Wang, T. T. et al. IgG antibodies to dengue enhanced for FcRIIIA binding determine disease severity. Science 355, 395–398 (2017).
pubmed: 28126818 pmcid: 5557095 doi: 10.1126/science.aai8128
Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).
pubmed: 35385861 pmcid: 10071495 doi: 10.1038/s41586-022-04702-4
Sefik, E. et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606, 585–593 (2022).
pubmed: 35483404 pmcid: 9288243 doi: 10.1038/s41586-022-04802-1
Sonneveld, M. E. et al. Fc-Glycosylation in human IgG1 and IgG3 is similar for both total and anti-red-blood cell anti-K antibodies. Front. Immunol. 9, 129 (2018).
pubmed: 29445378 pmcid: 5797742 doi: 10.3389/fimmu.2018.00129
Plomp, R. et al. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci. Rep. 7, 12325 (2017).
pubmed: 28951559 pmcid: 5615071 doi: 10.1038/s41598-017-12495-0
Peschke, B., Keller, C. W., Weber, P., Quast, I. & Lunemann, J. D. Fc galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front. Immunol. 8, 646 (2017). This study together with refs.
pubmed: 28634480 pmcid: 5459932 doi: 10.3389/fimmu.2017.00646
van Osch, T. L. J. et al. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. J. Immunol. 207, 1545–1554 (2021).
pubmed: 34408013 pmcid: 8428746 doi: 10.4049/jimmunol.2100399
Wei, B. et al. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs 13, 1893427 (2021).
pubmed: 33682619 pmcid: 7946005 doi: 10.1080/19420862.2021.1893427
Van Osch, T. L. J. et al. Fc galactosylation of anti-platelet human IgG1 alloantibodies enhances complement activation on platelets. Haematologica 107, 2432–2444 (2022).
pubmed: 35354253 pmcid: 9521249 doi: 10.3324/haematol.2021.280493
Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).
pubmed: 7585040 doi: 10.1038/nm0395-237
Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).
pubmed: 17485663 pmcid: 1895967 doi: 10.1073/pnas.0702936104
Gstottner, C. et al. Affinity capillary electrophoresis–mass spectrometry permits direct binding assessment of IgG and FcγRIIa in a glycoform-resolved manner. Front. Immunol. 13, 980291 (2022).
pubmed: 36159782 pmcid: 9494200 doi: 10.3389/fimmu.2022.980291
Lippold, S. et al. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography–mass spectrometry. MAbs 13, 1982847 (2021).
pubmed: 34674601 pmcid: 8726612 doi: 10.1080/19420862.2021.1982847
Bye, A. P. et al. Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets. Blood 138, 1481–1489 (2021).
pubmed: 34315173 pmcid: 8321687 doi: 10.1182/blood.2021011871
Gudelj, I., Lauc, G. & Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333, 65–79 (2018).
pubmed: 30107893 doi: 10.1016/j.cellimm.2018.07.009
Kissel, T., Toes, R. E. M., Huizinga, T. W. J. & Wuhrer, M. Glycobiology of rheumatic diseases. Nat. Rev. Rheumatol. 19, 28–43 (2023).
pubmed: 36418483 doi: 10.1038/s41584-022-00867-4
Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).
pubmed: 18420934 pmcid: 2409116 doi: 10.1126/science.1154315
Bartsch, Y. C. et al. Sialylated autoantigen-reactive IgG antibodies attenuate disease development in autoimmune mouse models of lupus nephritis and rheumatoid arthritis. Front. Immunol. 9, 1183 (2018).
pubmed: 29928274 pmcid: 5997785 doi: 10.3389/fimmu.2018.01183
Epp, A. et al. Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J. Allergy Clin. Immunol. 141, 399–402 (2018).
pubmed: 28728998 doi: 10.1016/j.jaci.2017.06.021
Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).
pubmed: 16888140 doi: 10.1126/science.1129594
Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).
pubmed: 25733881 pmcid: 4371931 doi: 10.1073/pnas.1422481112
Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest. 123, 3788–3796 (2013).
pubmed: 23979161 pmcid: 3754242 doi: 10.1172/JCI65938
Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).
pubmed: 29720252 pmcid: 5932893 doi: 10.1186/s13075-018-1586-z
Wang, J. et al. Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol. Cell Proteom. 10, M110.004655 (2011).
doi: 10.1074/mcp.M110.004655
Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23–T
pubmed: 27820809 doi: 10.1038/ni.3579
Jefferis, R., Lund, J. & Goodall, M. Modulation of FcγR and human complement activation by IgG3-core oligosaccharide interactions. Immunol. Lett. 54, 101–104 (1996).
pubmed: 9052861 doi: 10.1016/S0165-2478(96)02656-9
Lund, J., Takahashi, N., Pound, J. D., Goodall, M. & Jefferis, R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol. 157, 4963–4969 (1996).
pubmed: 8943402 doi: 10.4049/jimmunol.157.11.4963
Ahmed, A. A. et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J. Mol. Biol. 426, 3166–3179 (2014).
pubmed: 25036289 pmcid: 4159253 doi: 10.1016/j.jmb.2014.07.006
Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–E3546 (2013).
pubmed: 23929778 pmcid: 3780870 doi: 10.1073/pnas.1310657110
Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).
pubmed: 25825024 doi: 10.1038/ncomms7651
Tanigaki, K. et al. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance. J. Clin. Invest. 128, 309–322 (2018). This study highlights how IgG sialylation status modulates obesity-induced insulin resistance via FcγRIIb.
pubmed: 29202472 doi: 10.1172/JCI89333
Choi, H. et al. Sialylated IVIg binding to DC-SIGN
pubmed: 36581222 doi: 10.1016/j.clim.2022.109215
Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162, 160–169 (2015).
pubmed: 26140596 pmcid: 4594835 doi: 10.1016/j.cell.2015.06.026
Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).
pubmed: 19036920 pmcid: 2604916 doi: 10.1073/pnas.0810163105
Temming, A. R. et al. Human DC-SIGN and CD23 do not interact with human IgG. Sci. Rep. 9, 9995 (2019).
pubmed: 31292524 pmcid: 6620288 doi: 10.1038/s41598-019-46484-2
Yu, X., Vasiljevic, S., Mitchell, D. A., Crispin, M. & Scanlan, C. N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J. Mol. Biol. 425, 1253–1258 (2013).
pubmed: 23416198 doi: 10.1016/j.jmb.2013.02.006
van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).
pubmed: 29432186 pmcid: 5828577 doi: 10.1073/pnas.1711720115
Kempers, A. C., Hafkenscheid, L., Scherer, H. U. & Toes, R. E. M. Variable domain glycosylation of ACPA-IgG: a missing link in the maturation of the ACPA response? Clin. Immunol. 186, 34–37 (2018).
pubmed: 28882619 doi: 10.1016/j.clim.2017.09.001
van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).
pubmed: 26851295 doi: 10.4049/jimmunol.1502136
Kissel, T. et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 8, eabm1759 (2022).
pubmed: 35138894 pmcid: 8827743 doi: 10.1126/sciadv.abm1759
Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1,500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).
pubmed: 35188715 pmcid: 9544857 doi: 10.1002/art.42098
Coloma, M. J., Trinh, R. K., Martinez, A. R. & Morrison, S. L. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1–>6) dextran antibody. J. Immunol. 162, 2162–2170 (1999).
pubmed: 9973491 doi: 10.4049/jimmunol.162.4.2162
Volkov, M. et al. IgG Fab glycans hinder FcRn-mediated placental transport. J. Immunol. 210, 158–167 (2022).
doi: 10.4049/jimmunol.2200438
Erickson, J. J. et al. Pregnancy enables antibody protection against intracellular infection. Nature 606, 769–775 (2022). This study identifies a new pathway of Fab glycosylation-dependent immunomodulation via modulation of IL-10 secretion by B cells.
pubmed: 35676476 pmcid: 9233044 doi: 10.1038/s41586-022-04816-9
Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell Proteom. 13, 3029–3039 (2014).
doi: 10.1074/mcp.M114.039537
Dyer, M. J., Hale, G., Hayhoe, F. G. & Waldmann, H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73, 1431–1439 (1989).
pubmed: 2713487 doi: 10.1182/blood.V73.6.1431.1431
Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).
pubmed: 10742152 doi: 10.1038/74704
Lux, A. et al. A humanized mouse identifies the bone marrow as a niche with low therapeutic IgG activity. Cell Rep. 7, 236–248 (2014).
pubmed: 24685130 doi: 10.1016/j.celrep.2014.02.041
Liu, R., Oldham, R. J., Teal, E., Beers, S. A. & Cragg, M. S. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies 9, 64 (2020).
pubmed: 33212886 pmcid: 7709126 doi: 10.3390/antib9040064
Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).
pubmed: 29904196 doi: 10.1038/nrd.2018.75
Dahan, R. et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28, 285–295 (2015).
pubmed: 26373277 doi: 10.1016/j.ccell.2015.08.004
Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).
pubmed: 28490665 pmcid: 5734617 doi: 10.1126/scitranslmed.aal3604
Moreno-Vicente, J. et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J. Immunother. Cancer 10, e003735 (2022).
pubmed: 35017153 pmcid: 8753441 doi: 10.1136/jitc-2021-003735
Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).
pubmed: 19018092 doi: 10.1182/blood-2008-09-179754
Lux, A., Yu, X., Scanlan, C. N. & Nimmerjahn, F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J. Immunol. 190, 4315–4323 (2013).
pubmed: 23509345 doi: 10.4049/jimmunol.1200501
Reitinger, C. et al. Modulation of urelumab glycosylation separates immune stimulatory activity from organ toxicity. Front. Immunol. 13, 970290 (2022).
pubmed: 36248847 pmcid: 9558126 doi: 10.3389/fimmu.2022.970290
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
pubmed: 20525992 pmcid: 3549297 doi: 10.1056/NEJMoa1003466
Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).
pubmed: 23897981 pmcid: 3754863 doi: 10.1084/jem.20130579
Arce Vargas, F. et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33, 649–663 (2018).
pubmed: 29576375 pmcid: 5904288 doi: 10.1016/j.ccell.2018.02.010
Yofe, I. et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nat. Cancer 3, 1336–1350 (2022).
pubmed: 36302895 doi: 10.1038/s43018-022-00447-1
Waight, J. D. et al. Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33, 1033–1047 (2018).
pubmed: 29894690 pmcid: 6292441 doi: 10.1016/j.ccell.2018.05.005
Hussain, K. et al. Upregulation of FcγRIIb on monocytes is necessary to promote the superagonist activity of TGN1412. Blood 125, 102–110 (2015).
pubmed: 25395427 doi: 10.1182/blood-2014-08-593061
Li, F. & Ravetch, J. V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).
pubmed: 21852502 pmcid: 3164589 doi: 10.1126/science.1206954
Li, F. & Ravetch, J. V. Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement. Proc. Natl Acad. Sci. USA 109, 10966–10971 (2012).
pubmed: 22723355 pmcid: 3390832 doi: 10.1073/pnas.1208698109
White, A. L. et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol. 187, 1754–1763 (2011).
pubmed: 21742972 doi: 10.4049/jimmunol.1101135
Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19, 101–113 (2011).
pubmed: 21251615 doi: 10.1016/j.ccr.2010.11.012
White, A. L. et al. Fcγ receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization. J. Immunol. 193, 1828–1835 (2014).
pubmed: 25024386 doi: 10.4049/jimmunol.1303204
White, A. L. et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer cell 27, 138–148 (2015).
pubmed: 25500122 pmcid: 4297290 doi: 10.1016/j.ccell.2014.11.001
Yu, X. et al. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell 37, 850–866 (2020). This study highlights the effectof IgG subclass on the immunomodulatory activity of IgG.
Yu, X. et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 33, 664–675 (2018).
pubmed: 29576376 pmcid: 5896247 doi: 10.1016/j.ccell.2018.02.009
Yu, X. et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun. Biol. 4, 772 (2021).
pubmed: 34162985 pmcid: 8222242 doi: 10.1038/s42003-021-02309-5
Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).
pubmed: 27265505 pmcid: 4975533 doi: 10.1016/j.ccell.2016.05.001
Richman, L. P. & Vonderheide, R. H. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol. Res. 2, 19–26 (2014).
pubmed: 24416732 doi: 10.1158/2326-6066.CIR-13-0152
Dillon, T. M. et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J. Biol. Chem. 283, 16206–16215 (2008).
pubmed: 18339626 pmcid: 3259628 doi: 10.1074/jbc.M709988200
Wypych, J. et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J. Biol. Chem. 283, 16194–16205 (2008).
pubmed: 18339624 pmcid: 3259661 doi: 10.1074/jbc.M709987200
Liu, X. et al. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat. Commun. 10, 4206 (2019).
pubmed: 31562320 pmcid: 6765011 doi: 10.1038/s41467-019-12097-6
Brinkhaus, M. et al. The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement. Nat. Commun. 13, 6073 (2022).
pubmed: 36241613 pmcid: 9568614 doi: 10.1038/s41467-022-33764-1
James, L. C., Keeble, A. H., Khan, Z., Rhodes, D. A. & Trowsdale, J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc. Natl Acad. Sci. USA 104, 6200–6205 (2007).
pubmed: 17400754 pmcid: 1851072 doi: 10.1073/pnas.0609174104

Auteurs

Falk Nimmerjahn (F)

Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany. falk.nimmerjahn@fau.de.

Gestur Vidarsson (G)

Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands.
Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.

Mark S Cragg (MS)

Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
Institute for Life Sciences, University of Southampton, Southampton, UK.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans
Animals Humans Nickel Mice Immunotherapy
Humans COVID-19 Immunoglobulin G Antibodies, Viral SARS-CoV-2
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals

Classifications MeSH