Cognitive Aging: How the Brain Ages?
Brain aging
Cognitive aging
Cognitive domains
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
10
7
2023
pubmed:
7
7
2023
entrez:
7
7
2023
Statut:
ppublish
Résumé
Cognitive aging refers to the cognitive changes or functional decline that comes with age. The relation between aging and functional declines involves various aspects of cognition, including memory, attention, processing speed, and executive function. In this chapter, we have introduced several dimensions about cognitive aging trajectories. Meanwhile, we have reviewed the history of the study of cognitive aging and expatiated two trends that are particularly noteworthy in the effort to elucidate the process of aging. One is that the differences between components of mental abilities have become gradually specified. The other one is a growing interest in the neural process, which relates changes in the brain structure to age-related changes in cognition. Lastly, as the basis of cognitive function, brain structures and functions change during aging, and these changes are reflected in a corresponding decline in cognitive function. We have discussed the patterns of reorganization of various structural and functional aging processes of the brain and their relationship with cognitive function.
Identifiants
pubmed: 37418203
doi: 10.1007/978-981-99-1627-6_2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9-21Informations de copyright
© 2023. Springer Nature Singapore Pte Ltd.
Références
Craik F (1977) Age differences in human memory. In: Birren JE, Schaie KW (eds) Handbook of the psychology of aging. Van Nostrand Reinhold, New York
Perlmutter M (1988) Cognitive potential throughout life. In: Birren JE, Bengtson VL (eds) Emergent theories of aging. Springer Publishing Company, Berlin, pp 247–268
Salthouse TA (1990) Cognitive competence and expertise in aging. In: Birren JE, Schaie KW (eds) Handbook of the psychology of aging. Academic Press, Cambridge, MA, pp 310–319
doi: 10.1016/B978-0-12-101280-9.50024-3
Salthouse T (2012) Consequences of age-related cognitive declines. Annu Rev Psychol 63:201–226
pubmed: 21740223
doi: 10.1146/annurev-psych-120710-100328
Dixon RA (1998) The concept of gains in cognitive aging. In: Cognition, aging and self-reports. Psychology Press, London, pp 74–92
Carlson MC, Fried LP, Xue Q-L, Bandeen-Roche K, Zeger SL, Brandt J et al (1999) Association between executive attention and physical functional performance in community-dwelling older women. Gerontol B Psychol Sci Soc Sci 54(5):S262–S270
doi: 10.1093/geronb/54B.5.S262
Swanberg MM, Tractenberg RE, Mohs R, Thal LJ, Cummings JL (2004) Executive dysfunction in Alzheimer disease. Arch Neurol 61(4):556–560
pubmed: 15096405
pmcid: 4419376
doi: 10.1001/archneur.61.4.556
Willis SL, Schaie KW (2005) Cognitive trajectories in midlife and cognitive functioning in old age. pp 243–276
Bopp KL, Verhaeghen P (2005) Aging and verbal memory span: a meta-analysis. J Gerontol B Psychol Sci Soc Sci 60(5):P223–P233
pubmed: 16131616
doi: 10.1093/geronb/60.5.P223
Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK et al (2002) Models of visuospatial and verbal memory across the adult life span. Psychol Aging 17(2):299
pubmed: 12061414
doi: 10.1037/0882-7974.17.2.299
Light LL, La Voie D (1993) Direct and indirect measures of memory in old age. J Exp Psychol Learn Mem Cogn 18(6):1284–1297
doi: 10.1037/0278-7393.18.6.1284
Mitchell DB, Bruss PJ (2003) Age differences in implicit memory: conceptual, perceptual, or methodological? Psychol Aging 18(4):807
pubmed: 14692866
doi: 10.1037/0882-7974.18.4.807
Tulving E (1972) Episodic and semantic memory 1:381–403
Laver GD, Burke DM (1993) Why do semantic priming effects increase in old age? A meta-analysis. Psychol Aging 8(1):34
pubmed: 8461113
doi: 10.1037/0882-7974.8.1.34
Rönnlund M, Nyberg L, Bäckman L, Nilsson L-G (2005) Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol Aging 20(1):3
pubmed: 15769210
doi: 10.1037/0882-7974.20.1.3
Einstein GO, Holland LJ, McDaniel MA, Guynn MJ (1992) Age-related deficits in prospective memory: the influence of task complexity. Psychol Aging 7(3):471
pubmed: 1388869
doi: 10.1037/0882-7974.7.3.471
Einstein GO, McDaniel MA (1990) Normal aging and prospective memory. J Exp Psychol Learn Mem Cogn 16(4):717
pubmed: 2142956
doi: 10.1037/0278-7393.16.4.717
Head D, Rodrigue KM, Kennedy KM, Raz N (2008) Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology 22(4):491
pubmed: 18590361
pmcid: 2688704
doi: 10.1037/0894-4105.22.4.491
Raz N (2000) Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition. Lawrence Erlbaum Associates Publishers, pp 1–90
West R (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120(2):272
pubmed: 8831298
doi: 10.1037/0033-2909.120.2.272
Lezak M, Howieson D, Loring DJO (2012) Neuropsychological assessment, vol 10, 5th edn. Oxford University Press, New York, p 9780195395525
Bryan J, Luszcz MA, Pointer S (1999) Executive function and processing resources as predictors of adult age differences in the implementation of encoding strategies. Aging Neuropsychol Cognit 6(4):273–287
doi: 10.1076/1382-5585(199912)06:04;1-B;FT273
Salthouse TA (2010) Selective review of cognitive aging. J Int Neuropsychol Soc 16(5):754–760
pubmed: 20673381
pmcid: 3637655
doi: 10.1017/S1355617710000706
Singh-Manoux A, Kivimaki M, Glymour MM, Elbaz A, Berr C, Ebmeier KP et al (2012) Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344:d7622
pubmed: 22223828
pmcid: 3281313
doi: 10.1136/bmj.d7622
Kemper S, Joan MM (2008) Dimensions of cognitive aging: executive function and verbal fluency. In: In 2008. Citeseer
Birren JE, Schroots JJ (2001) History of geropsychology
Baltes PB, Willis SL (1977) Toward psychological theories of aging and development. In: The handbooks of aging. Van Nostrand Reinhold, pp 128–154
Anderson JR (2000) Cognitive psychology and its implications. Worth Publishers
Anderson ND, Craik FI (2017) 50 years of cognitive aging theory. J Gerontol Series B 72(1):1–6
doi: 10.1093/geronb/gbw108
Welford AT, Birren JE (1965) Behavior, aging, and the nervous system: biological determinants of speed of behavior and its changes with age, vol 600. Thomas
Salthouse TA (2001) Structural models of the relations between age and measures of cognitive functioning. Intelligence 29(2):93–115
doi: 10.1016/S0160-2896(00)00040-4
Bryan J, Luszcz MA (1996) Speed of information processing as a mediator between age and free-recall performance. Psychol Aging 11(1):3
pubmed: 8726365
doi: 10.1037/0882-7974.11.1.3
Salthouse TA, Czaja SJ (2000) Structural constraints on process explanations in cognitive aging. Psychol Aging 15(1):44
pubmed: 10755288
doi: 10.1037/0882-7974.15.1.44
Willoughby RR (1929) Incidental learning. J Educ Psychol 20(9):671
doi: 10.1037/h0071404
Kausler DH (2012) Experimental psychology, cognition, and human aging. Springer Science & Business Media
Hulicka IM, Grossman JL (1967) Age-group comparisons for the use of mediators in paired-associate learning. J Gerontol 22(1):46
pubmed: 6015767
doi: 10.1093/geront/7.2_Part_2.46
Nyberg L, Bäckman L, Erngrund K, Olofsson U, Nilsson L-G (1996) Age differences in episodic memory, semantic memory, and priming: relationships to demographic, intellectual, and biological factors. J Gerontol Ser B Psychol Sci Soc Sci 51(4):P234–P240
Park D, Lautenschlarger G, Hedden T, Davidson N, Smith A, Smith P (2003) Models of visuospatial and verbal memory across the lifespan. Psychol Aging 17(2):299–320
doi: 10.1037/0882-7974.17.2.299
Smith AD, Park DC, Cherry K, Berkovsky K (1990) Age differences in memory for concrete and abstract pictures. J Gerontol 45(5):P205–P210
pubmed: 2394917
doi: 10.1093/geronj/45.5.P205
Drag LL, Bieliauskas LA (2010) Contemporary review 2009: cognitive aging. J Geriatr Psychiatry Neurol 23(2):75–93
pubmed: 20101069
doi: 10.1177/0891988709358590
Donald B (1958) Perception and communication. Pergamon Press, New York
Rabbitt P (2019) 1 An age-decrement in the ability to ignore irrelevant information. In: Cognitive development and the ageing process: selected works of Patrick Rabbitt. p 5
McDowd JM, Craik FI (1988) Effects of aging and task difficulty on divided attention performance. J Exp Psychol Hum Percept Perform 14(2):267
pubmed: 2967880
doi: 10.1037/0096-1523.14.2.267
Verhaeghen P, Cerella J (2002) Aging, executive control, and attention: a review of meta-analyses. Neurosci Biobehav Rev 26(7):849–857
pubmed: 12470697
doi: 10.1016/S0149-7634(02)00071-4
Cabeza R, Nyberg L, Park DC (2016) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press
doi: 10.1093/acprof:oso/9780199372935.001.0001
Haug H (1983) Anatomical changes in aging brain: morphometric analysis of the human prosencephalon. Neurobiol Aging 12(4):336–338
doi: 10.1016/0197-4580(91)90013-A
Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD et al (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex (New York, NY: 1991) 7(3):268–282
Stern PC, Carstensen LL, Aging, N. R. C. C. o. F. D. f. C. R. o (2000) The aging mind: opportunities in cognitive research. National Academies Press (US)
Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R (2006) Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex 16(12):1771–1782
pubmed: 16421332
doi: 10.1093/cercor/bhj112
Li S-C, Lindenberger U (1999) Cross-level unification: a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In: Cognitive neuroscience of memory. Hogrefe & Huber, pp 103–146
Li S-C, Lindenberger U, Sikström S (2001) Aging cognition: from neuromodulation to representation. Trends Cogn Sci 5(11):479–486
pubmed: 11684480
doi: 10.1016/S1364-6613(00)01769-1
Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL (2004) Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging 25(7):843–851
pubmed: 15212838
doi: 10.1016/j.neurobiolaging.2003.09.005
Tucker-Drob EM, Salthouse TA (2008) Adult age trends in the relations among cognitive abilities. Psychol Aging 23(2):453
pubmed: 18573019
pmcid: 2762546
doi: 10.1037/0882-7974.23.2.453
Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M et al (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72(22):1906–1913
pubmed: 19487648
pmcid: 2690968
doi: 10.1212/WNL.0b013e3181a82634
Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689
pubmed: 15703252
doi: 10.1093/cercor/bhi044
Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730
pubmed: 15054051
doi: 10.1093/cercor/bhh032
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Alzheimer's Disease Neuroimaging Initiative (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40
pubmed: 24548606
pmcid: 4343307
doi: 10.1016/j.pneurobio.2014.02.004
Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L (2012) Memory aging and brain maintenance. Trends Cogn Sci 16(5):292–305
pubmed: 22542563
doi: 10.1016/j.tics.2012.04.005
Geerligs L, Saliasi E, Maurits NM, Renken RJ, Lorist MM (2014) Brain mechanisms underlying the effects of aging on different aspects of selective attention. NeuroImage 91:52–62
pubmed: 24473095
doi: 10.1016/j.neuroimage.2014.01.029
Coppin AK, Shumway-Cook A, Saczynski JS, Patel KV, Ble A, Ferrucci L et al (2006) Association of executive function and performance of dual-task physical tests among older adults: analyses from the InChianti study. Age Ageing 35(6):619–624
pubmed: 17047008
doi: 10.1093/ageing/afl107
Marchand WR, Lee JN, Suchy Y, Garn C, Johnson S, Wood N et al (2011) Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. NeuroImage 55(1):194–203
pubmed: 21167945
doi: 10.1016/j.neuroimage.2010.12.030
Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–733
pubmed: 19850077
doi: 10.1016/j.neubiorev.2009.10.005
Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR et al (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33(3):617. e611–617.e619
Manard M, Bahri MA, Salmon E, Collette F (2016) Relationship between grey matter integrity and executive abilities in aging. Brain Res 1642:562–580
pubmed: 27107940
doi: 10.1016/j.brainres.2016.04.045
Rossi AF, Pessoa L, Desimone R, Ungerleider LG (2009) The prefrontal cortex and the executive control of attention. Exp Brain Res 192(3):489
pubmed: 19030851
doi: 10.1007/s00221-008-1642-z
Japee S, Holiday K, Satyshur MD, Mukai I, Ungerleider LG (2015) A role of right middle frontal gyrus in reorienting of attention: a case study. Front Syst Neurosci 9:23
pubmed: 25784862
pmcid: 4347607
doi: 10.3389/fnsys.2015.00023
Hickok G (2009) The functional neuroanatomy of language. Phys Life Rev 6(3):121–143
pubmed: 20161054
pmcid: 2747108
doi: 10.1016/j.plrev.2009.06.001
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40
pubmed: 24548606
pmcid: 4343307
doi: 10.1016/j.pneurobio.2014.02.004
Liu H, Wang L, Geng Z, Zhu Q, Song Z, Chang R et al (2016) A voxel-based morphometric study of age-and sex-related changes in white matter volume in the normal aging brain. Neuropsychiatr Dis Treat 12:453
pubmed: 26966366
pmcid: 4771405
Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23(8):3295–3301
pubmed: 12716936
pmcid: 6742337
doi: 10.1523/JNEUROSCI.23-08-03295.2003
Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994
pubmed: 12873856
doi: 10.1001/archneur.60.7.989
Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RS, Helms G et al (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). NeuroImage 55(4):1423–1434
pubmed: 21277375
doi: 10.1016/j.neuroimage.2011.01.052
Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G et al (2016) Ageing and brain white matter structure in 3,513 UK biobank participants. Nat Commun 7:13629
pubmed: 27976682
pmcid: 5172385
doi: 10.1038/ncomms13629
Sullivan EV, Pfefferbaum A (2003) Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 45(3):244–255
pubmed: 12595109
doi: 10.1016/S0720-048X(02)00313-3
Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage 46(2):530–541
pubmed: 19385018
doi: 10.1016/j.neuroimage.2009.01.068
Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK et al (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26(8):1215–1227
pubmed: 15917106
doi: 10.1016/j.neurobiolaging.2004.09.017
Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV (2009) Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. NeuroImage 44(3):1050–1062
pubmed: 18977450
doi: 10.1016/j.neuroimage.2008.09.046
Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187–205
pubmed: 24280637
doi: 10.1016/j.neuroscience.2013.11.026
Caserta MT, Bannon Y, Fernandez F, Giunta B, Schoenberg MR, Tan J (2009) Normal brain aging: clinical, immunological, neuropsychological, and neuroimaging features. Int Rev Neurobiol 84:1–19
pubmed: 19501710
doi: 10.1016/S0074-7742(09)00401-2
Bartres-Faz D, Clemente I, Junque C (2001) White matter changes and cognitive performance in aging. Rev Neurol 33(4):347–353
pubmed: 11588730
Bolandzadeh N, Davis JC, Tam R, Handy TC, Liu-Ambrose T (2012) The association between cognitive function and white matter lesion location in older adults: a systematic review. BMC Neurol 12(1):126
pubmed: 23110387
pmcid: 3522005
doi: 10.1186/1471-2377-12-126
Burns JM, Church JA, Johnson DK, Xiong C, Marcus D, Fotenos AF et al (2005) White matter lesions are prevalent but differentially related with cognition in aging and early Alzheimer disease. Arch Neurol 62(12):1870–1876
pubmed: 16344345
doi: 10.1001/archneur.62.12.1870
Kim JH, Hwang KJ, Kim J-H, Lee YH, Rhee HY, Park K-C (2011) Regional white matter hyperintensities in normal aging, single domain amnestic mild cognitive impairment, and mild Alzheimer’s disease. J Clin Neurosci 18(8):1101–1106
pubmed: 21723730
doi: 10.1016/j.jocn.2011.01.008
Cees De Groot J, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam scan study. Ann Neurol 47(2):145–151
doi: 10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P
Silbert L, Nelson C, Howieson D, Moore M, Kaye J (2008) Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 71(2):108–113
pubmed: 18606964
pmcid: 2676966
doi: 10.1212/01.wnl.0000316799.86917.37
Baune BT, Roesler A, Knecht S, Berger K (2009) Single and combined effects of cerebral white matter lesions and lacunar infarctions on cognitive function in an elderly population. J Gerontol Ser A 64(1):118–124
doi: 10.1093/gerona/gln004
Ishii H, Meguro K, Yamaguchi S, Ishikawa H, Yamadori A (2007) Prevalence and cognitive performances of vascular cognitive impairment no dementia in Japan: the Osaki–Tajiri Project. Eur J Neurol 14(6):609–616
pubmed: 17539936
doi: 10.1111/j.1468-1331.2007.01781.x
Wig GS, Grafton ST, Demos KE, Wolford GL, Petersen SE, Kelley WM (2008) Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults. Proc Natl Acad Sci U S A 105(47):18555–18560
pubmed: 19001272
pmcid: 2582045
doi: 10.1073/pnas.0804546105
Li SC, Lindenberger U, Sikstrom S (2001) Aging cognition: from neuromodulation to representation. Trends Cogn Sci 5(11):479–486
pubmed: 11684480
doi: 10.1016/S1364-6613(00)01769-1
Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100
pubmed: 11931290
doi: 10.1037/0882-7974.17.1.85
Berlingeri M, Danelli L, Bottini G, Sberna M, Paulesu E (2013) Reassessing the HAROLD model: is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp Brain Res 224(3):393–410
pubmed: 23178904
doi: 10.1007/s00221-012-3319-x
Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18(5):1201–1209
pubmed: 17925295
doi: 10.1093/cercor/bhm155
Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP et al (2010) Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22(4):655–669
pubmed: 19320550
pmcid: 3666347
doi: 10.1162/jocn.2009.21230
Anthony M, Lin F (2018) A systematic review for functional neuroimaging studies of cognitive reserve across the cognitive aging spectrum. Arch Clin Neuropsychol 33(8):937–948
pubmed: 29244054
doi: 10.1093/arclin/acx125
Springer MV, McIntosh AR, Winocur G, Grady CL (2005) The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology 19(2):181
pubmed: 15769202
doi: 10.1037/0894-4105.19.2.181
Steffener J, Reuben A, Rakitin BC, Stern Y (2011) Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging Behav 5(3):212–221
pubmed: 21607547
pmcid: 3169844
doi: 10.1007/s11682-011-9125-4
Waiter GD, Fox HC, Murray AD, Starr JM, Staff RT, Bourne VJ et al (2008) Is retaining the youthful functional anatomy underlying speed of information processing a signature of successful cognitive ageing? An event-related fMRI study of inspection time performance. NeuroImage 41(2):581–595
pubmed: 18395472
doi: 10.1016/j.neuroimage.2008.02.045
Solé-Padullés C, Bartrés-Faz D, Junqué C, Vendrell P, Rami L, Clemente IC et al (2009) Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 30(7):1114–1124
pubmed: 18053618
doi: 10.1016/j.neurobiolaging.2007.10.008
Marques P, Moreira P, Magalhães R, Costa P, Santos N, Zihl J et al (2016) The functional connectome of cognitive reserve. Hum Brain Mapp 37(9):3310–3322
pubmed: 27144904
pmcid: 5084807
doi: 10.1002/hbm.23242
Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24(11):2186–2198
pubmed: 22784277
doi: 10.1162/jocn_a_00269
Wang L, Laviolette P, O'Keefe K, Putcha D, Bakkour A, Van Dijk KR et al (2010) Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. NeuroImage 51(2):910–917
pubmed: 20188183
doi: 10.1016/j.neuroimage.2010.02.046
Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2015) A brain-wide study of age-related changes in functional connectivity. Cereb Cortex 25(7):1987–1999
pubmed: 24532319
doi: 10.1093/cercor/bhu012
Sala-Llonch R, Bartres-Faz D, Junque C (2015) Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol 6:663
pubmed: 26052298
pmcid: 4439539
doi: 10.3389/fpsyg.2015.00663
Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry, 17(5):471, 549–458
Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17
pubmed: 17274684
pmcid: 1794324
doi: 10.1371/journal.pcbi.0030017
Tsvetanov KA, Henson RN, Tyler LK, Razi A, Geerligs L, Ham TE et al (2016) Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation. J Neurosci 36(11):3115–3126
pubmed: 26985024
pmcid: 4792930
doi: 10.1523/JNEUROSCI.2733-15.2016
Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME et al (2014) Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect 4(9):662–676
pubmed: 25183440
pmcid: 4238253
doi: 10.1089/brain.2014.0286
Stern Y, Zarahn E, Habeck C, Holtzer R, Rakitin BC, Kumar A et al (2008) A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cereb Cortex 18(4):959–967
pubmed: 17675368
doi: 10.1093/cercor/bhm134
Arenaza-Urquijo EM, Landeau B, La Joie R, Mevel K, Mézenge F, Perrotin A et al (2013) Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage 83:450–457
pubmed: 23796547
doi: 10.1016/j.neuroimage.2013.06.053
Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA (2012) Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol 72(4):599–609
pubmed: 23109154
pmcid: 3490232
doi: 10.1002/ana.23654
Alzheimer's Association (2020) 2020 Alzheimer's disease facts and figures
Deary IJ, Whiteman MC, Starr JM, Whalley LJ, Fox HC (2004) The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. J Pers Soc Psychol 86(1):130
pubmed: 14717632
doi: 10.1037/0022-3514.86.1.130