The ins and outs of membrane bending by intrinsically disordered proteins.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
07 07 2023
Historique:
medline: 10 7 2023
pubmed: 7 7 2023
entrez: 7 7 2023
Statut: ppublish

Résumé

Membrane curvature is essential to diverse cellular functions. While classically attributed to structured domains, recent work illustrates that intrinsically disordered proteins are also potent drivers of membrane bending. Specifically, repulsive interactions among disordered domains drive convex bending, while attractive interactions drive concave bending, creating membrane-bound, liquid-like condensates. How might disordered domains that contain both repulsive and attractive domains affect curvature? Here, we examined chimeras that combined attractive and repulsive interactions. When the attractive domain was closer to the membrane, its condensation amplified steric pressure among repulsive domains, leading to convex curvature. In contrast, when the repulsive domain was closer to the membrane, attractive interactions dominated, resulting in concave curvature. Further, a transition from convex to concave curvature occurred with increasing ionic strength, which reduced repulsion while enhancing condensation. In agreement with a simple mechanical model, these results illustrate a set of design rules for membrane bending by disordered proteins.

Identifiants

pubmed: 37418523
doi: 10.1126/sciadv.adg3485
pmc: PMC10328403
doi:

Substances chimiques

Intrinsically Disordered Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eadg3485

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM132106
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM139531
Pays : United States

Références

Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94
pubmed: 26015579
Nat Commun. 2015 Jul 24;6:7875
pubmed: 26204806
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7781-6
pubmed: 20385839
Cell. 2010 Dec 10;143(6):875-87
pubmed: 21145455
Soft Matter. 2015 Apr 28;11(16):3241-50
pubmed: 25772372
Nat Commun. 2018 Oct 8;9(1):4152
pubmed: 30297718
Phys Rev Lett. 2002 Jun 10;88(23):238101
pubmed: 12059401
Biophys J. 1974 Dec;14(12):923-31
pubmed: 4429770
J Mol Biol. 2018 Aug 3;430(16):2293-2308
pubmed: 29627460
Nature. 2005 Dec 1;438(7068):590-6
pubmed: 16319878
Eur J Pharm Biopharm. 2015 Oct;96:282-90
pubmed: 26259782
Cell. 2019 Jun 13;177(7):1757-1770.e21
pubmed: 31056282
Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):2042-2063
pubmed: 29501601
J Theor Biol. 1970 Jan;26(1):61-81
pubmed: 5411112
Mol Cell. 2015 Oct 15;60(2):231-41
pubmed: 26455390
Nat Cell Biol. 2012 Sep;14(9):944-9
pubmed: 22902598
FEBS Lett. 2010 May 3;584(9):1840-7
pubmed: 19837069
J Virol. 2000 Dec;74(24):11538-47
pubmed: 11090151
Nat Commun. 2018 Jul 30;9(1):2985
pubmed: 30061688
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):
pubmed: 33688043
J Am Chem Soc. 2019 Jul 3;141(26):10361-10371
pubmed: 31180661
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2450-5
pubmed: 12604785
Eur Phys J E Soft Matter. 2006 Jul;20(3):243-56
pubmed: 16862399
J Cell Biol. 2016 Aug 15;214(4):375-87
pubmed: 27528656
J Cell Sci. 2015 Mar 15;128(6):1065-70
pubmed: 25774051
Nat Rev Mol Cell Biol. 2010 Jul;11(7):490-501
pubmed: 20571586
J Biomol Struct Dyn. 2012;30(2):137-49
pubmed: 22702725
Science. 2020 Feb 7;367(6478):694-699
pubmed: 32029630
Nat Rev Mol Cell Biol. 2006 Jan;7(1):9-19
pubmed: 16365634
Structure. 2011 Apr 13;19(4):566-76
pubmed: 21481779
Sci Rep. 2017 Jan 25;7:40801
pubmed: 28120862
J Cell Biol. 2000 Feb 21;148(4):635-51
pubmed: 10684247
Biophys Rep (N Y). 2022 Sep 14;2(3):
pubmed: 36157269
Biochim Biophys Acta Mol Cell Res. 2022 Apr;1869(4):119205
pubmed: 34995711
Cell. 2014 Feb 27;156(5):882-92
pubmed: 24581490
Trends Cell Biol. 2018 Jun;28(6):420-435
pubmed: 29602697
Annu Rev Cell Dev Biol. 2004;20:153-91
pubmed: 15473838
Biophys J. 1998 Nov;75(5):2469-77
pubmed: 9788942
J Cell Biol. 2019 Feb 4;218(2):664-682
pubmed: 30504247
CRC Crit Rev Bioeng. 1979 Nov;3(4):331-418
pubmed: 391486

Auteurs

Feng Yuan (F)

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.

Christopher T Lee (CT)

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.

Arjun Sangani (A)

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.

Justin R Houser (JR)

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.

Liping Wang (L)

Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Eileen M Lafer (EM)

Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Padmini Rangamani (P)

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.

Jeanne C Stachowiak (JC)

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.

Articles similaires

1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology

Intrinsically disordered region amplifies membrane remodeling to augment selective ER-phagy.

Sergio Alejandro Poveda-Cuevas, Kateryna Lohachova, Borna Markusic et al.
1.00
Endoplasmic Reticulum Membrane Proteins Humans Molecular Dynamics Simulation Intrinsically Disordered Proteins
Intrinsically Disordered Proteins Protein Folding Protein Binding Protein Conformation Models, Molecular

Classifications MeSH