The study of the effect of HLA-B27 on THP-1 monocytic cells survival and its mechanism.
HLA-B*27:04
THP-1 cells
UPR
ankylosing spondylitis
cell proliferation
Journal
International journal of rheumatic diseases
ISSN: 1756-185X
Titre abrégé: Int J Rheum Dis
Pays: England
ID NLM: 101474930
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
revised:
11
05
2023
received:
01
05
2023
accepted:
17
05
2023
medline:
2
8
2023
pubmed:
10
7
2023
entrez:
10
7
2023
Statut:
ppublish
Résumé
Previous studies have shown that human leukocyte antigen (HLA)-B27 induces the accumulation of unfolded proteins in the endoplasmic reticulum (ER) to cause ER stress, resulting in the unfold protein response (UPR), apoptosis and autophagy. However, it is still unknown whether it affects the survival of monocytes. In this study, we attempted to examine the effect of HLA-B27 gene knockout on the proliferation and apoptosis of THP-1 monocytic cell line and its potential mechanism. HLA-B27 gene knockout THP-1 cell line was constructed by lentivirus infection, and knockout efficiency was detected by immunofluorescence, quantitative reverse transcription - polymerase chain reaction (qRT-PCR) and western blot. Cell Counting Kit-8 (CCK-8) method and Annexin-V/PI double staining were used to detect the proliferation and apoptosis of the constructed THP-1 cell line, respectively. qRT-PCR was used to detect the effect of HLA-B27 inhibition on the expressions of ER molecular chaperone binding immunoglobulin protein (BiP) and genes about the UPR pathway. The proliferation rate of human BiP protein-stimulated THP-1 cells was detected by CCK-8 method. HLA-B27 gene knockout THP-1 cells were successfully constructed by lentivirus infection. Knockout of HLA-B27 effectively promoted the proliferation of THP-1 cells and inhibited the apoptosis induced by cisplatin. qRT-PCR showed that BiP was synchronously increased, while activation of UPR pathway was inhibited. Stimulation with human BiP promoted the proliferation of THP-1 cells in a concentration-dependent manner. HLA-B27 inhibition can promote the proliferation and inhibit the apoptosis of THP-1 cells. The inhibition function may be achieved through promotion of BiP and inhibition of UPR pathway activation.
Identifiants
pubmed: 37424166
doi: 10.1111/1756-185X.14758
doi:
Substances chimiques
HLA-B27 Antigen
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1474-1484Subventions
Organisme : Guangdong Clinical Research Center of Immune Disease (2020B1111170008)
Informations de copyright
© 2023 The Authors. International Journal of Rheumatic Diseases published by Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Références
Yang W, Rong L, Xu Q, et al. Identification of symptom clusters in patients with ankylosing spondylitis. Int J Rheum Dis. 2022;25(10):1137-1144.
Ku CH, Lee YH, Wei JC, Braun J. Current aspects for the treatment of axial spondyloarthritis. Int J Rheum Dis. 2023;26(1):5-7.
Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379-1390.
Bowness P. HLA-B27. Annu Rev Immunol. 2015;33:29-48.
Zeng QY, Chen R, Darmawan J, et al. Rheumatic diseases in China. Arthritis Res Ther. 2008;10(1):R17.
Ho HH, Chen JY. Ankylosing spondylitis: Chinese perspective, clinical phenotypes, and associated extra-articular systemic features. Curr Rheumatol Rep. 2013;15(8):344.
Khan MA. Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep. 2013;15(10):362.
López-Larrea C, Sujirachato K, Mehra NK, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995;45(3):169-176.
Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Greenwood BM, McMichael AJ. HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet. 1991;337(8742):640-642.
D'Amato M, Fiorillo MT, Carcassi C, et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol. 1995;25(11):3199-3201.
Yi L, Wang J, Guo X, et al. Profiling of hla-B alleles for association studies with ankylosing spondylitis in the chinese population. Open Rheumatol J. 2013;7:51-54.
You Y, Cai M, Zhang W, Lin JS. Altered bacterial profiles at genus level in the gut of ankylosing spondylitis patients with different ASDAS scores. Int J Rheum Dis. 2022;25(2):239-241.
Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology (Oxford). 2018;57(suppl_6):vi4-vi9.
Huang CH, Wei JC, Chang WC, et al. Higher expression of whole blood microRNA-21 in patients with ankylosing spondylitis associated with programmed cell death 4 mRNA expression and collagen cross-linked C-telopeptide concentration. J Rheumatol. 2014;41(6):1104-1111.
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385-396.
Colbert RA, DeLay ML, Klenk EI, Layh-Schmitt G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev. 2010;233(1):181-202.
Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol. 2008;38(5):1194-1203.
Turner MJ, Sowders DP, DeLay ML, et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol. 2005;175(4):2438-2448.
Turner MJ, Delay ML, Bai S, Klenk E, Colbert RA. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheumatol. 2007;56(1):215-223.
DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60(9):2633-2643.
Utriainen L, Firmin D, Wright P, et al. Expression of HLA-B27 causes loss of migratory dendritic cells in a rat model of spondylarthritis. Arthritis Rheum. 2012;64(10):3199-3209.
Layh-Schmitt G, Yang EY, Kwon G, Colbert RA. HLA-B27 alters the response to tumor necrosis factor α and promotes osteoclastogenesis in bone marrow monocytes from HLA-B27-transgenic rats. Arthritis Rheumatol. 2013;65(8):2123-2131.
Dickhout JG, Lhotak S, Hilditch BA, et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions. FASEB J. 2011;25(2):576-589.
Surdacki A, Sulicka J, Korkosz M, et al. Blood monocyte heterogeneity and markers of endothelial activation in ankylosing spondylitis. J Rheumatol. 2014;41(3):481-489.
Wright PB, McEntegart A, McCarey D, McInnes IB, Siebert S, Milling SW. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation. Rheumatology (Oxford). 2016;55(1):120-132.
Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455-462.
Taurog JD. The mystery of HLA-B27: if it isn't one thing, it's another. Arthritis Rheum. 2007;56(8):2478-2481.
Jah N, Jobart-Malfait A, Ermoza K, et al. HLA-B27 subtypes predisposing to ankylosing spondylitis accumulate in an endoplasmic reticulum-derived compartment apart from the peptide-loading complex. Arthritis Rheumatol. 2020;72(9):1534-1546.
Khan MA, Yong SB, Wei JC. Ankylosing spondylitis: history, epidemiology, and HLA-B27. Int J Rheum Dis. 2023;26(3):413-414.
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in Spondyloarthritis. Semin Immunol. 2021;58:101521.
Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349-362.
Liu CH, Raj S, Chen CH, et al. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest. 2019;129(12):5357-5373.
Campbell EC, Fettke F, Bhat S, Morley KD, Powis SJ. Expression of MHC class I dimers and ERAP1 in an ankylosing spondylitis patient cohort. Immunology. 2011;133(3):379-385.
Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-789.
Molinari M, Galli C, Vanoni O, Arnold SM, Kaufman RJ. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol Cell. 2005;20(4):503-512.
Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081-1086.
Sundaram A, Appathurai S, Plumb R, Mariappan M. Dynamic changes in complexes of IRE1alpha, PERK, and ATF6alpha during endoplasmic reticulum stress. Mol Biol Cell. 2018;29(11):1376-1388.