Raynals, an online tool for the analysis of dynamic light scattering.

Raynals dynamic light scattering hydrodynamic radius molecular biophysics online data analysis protein quality control size distribution software

Journal

Acta crystallographica. Section D, Structural biology
ISSN: 2059-7983
Titre abrégé: Acta Crystallogr D Struct Biol
Pays: United States
ID NLM: 101676043

Informations de publication

Date de publication:
01 Aug 2023
Historique:
received: 25 04 2023
accepted: 05 06 2023
medline: 3 8 2023
pubmed: 10 7 2023
entrez: 10 7 2023
Statut: ppublish

Résumé

Dynamic light scattering (DLS) is routinely employed to assess the homogeneity and size-distribution profile of samples containing microscopic particles in suspension or solubilized polymers. In this work, Raynals, user-friendly software for the analysis of single-angle DLS data that uses the Tikhonov-Phillips regularization, is introduced. Its performance is evaluated on simulated and experimental data generated by different DLS instruments for several proteins and gold nanoparticles. DLS data can easily be misinterpreted and the simulation tools available in Raynals allow the limitations of the measurement and its resolution to be understood. It was designed as a tool to address the quality control of biological samples during sample preparation and optimization and it helps in the detection of aggregates, showing the influence of large particles. Lastly, Raynals provides flexibility in the way that the data are presented, allows the export of publication-quality figures, is free for academic use and can be accessed online on the eSPC data-analysis platform at https://spc.embl-hamburg.de/.

Identifiants

pubmed: 37428846
pii: S2059798323004862
doi: 10.1107/S2059798323004862
pmc: PMC10394669
doi:

Substances chimiques

Gold 7440-57-5
Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

673-683

Subventions

Organisme : H2020 Marie Skłodowska-Curie Actions
ID : 945405
Organisme : Horizon 2020 Framework Programme
ID : 101004806

Informations de copyright

open access.

Références

J Phys Condens Matter. 2015 Apr 15;27(14):145102
pubmed: 25788443
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Langmuir. 2008 Jun 1;24(13):6866-72
pubmed: 18512882
Acta Crystallogr F Struct Biol Commun. 2015 Jan 1;71(Pt 1):75-81
pubmed: 25615974
Microb Cell Fact. 2014 Dec 30;13:180
pubmed: 25547134
Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1241-1250
pubmed: 34605428
IEEE Trans Biomed Eng. 2003 Jan;50(1):11-22
pubmed: 12617520
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1597-600
pubmed: 12351869
Nat Commun. 2021 May 14;12(1):2795
pubmed: 33990604
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Aug 1;68(Pt 8):994-8
pubmed: 22869140
Sci Rep. 2021 May 5;11(1):9572
pubmed: 33953265
Biophys Rev. 2016 Dec;8(4):409-427
pubmed: 28510011
J Chem Phys. 2015 Jun 21;142(23):234905
pubmed: 26093577
Front Mol Biosci. 2022 Jun 23;9:882288
pubmed: 35813810
Biophys J. 2003 Dec;85(6):3943-50
pubmed: 14645083
Cell. 1998 Nov 13;95(4):563-73
pubmed: 9827808
Biomacromolecules. 2007 Jun;8(6):2011-24
pubmed: 17521163
PLoS One. 2012;7(6):e33545
pubmed: 22675464
Mol Biol Cell. 1999 Jul;10(7):2265-83
pubmed: 10397764

Auteurs

Osvaldo Burastero (O)

European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, Germany.

George Draper-Barr (G)

European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, Germany.

Bertrand Raynal (B)

Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Biophysique Moléculaire, Paris, France.

Maelenn Chevreuil (M)

Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Biophysique Moléculaire, Paris, France.

Patrick England (P)

Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Biophysique Moléculaire, Paris, France.

Maria Garcia Alai (M)

European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, Germany.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Humans Hyaluronic Acid Osteoarthritis, Hip Female Middle Aged

Classifications MeSH