Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein-Protein Conjugation Strategy.


Journal

Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056

Informations de publication

Date de publication:
26 07 2023
Historique:
medline: 27 7 2023
pubmed: 13 7 2023
entrez: 13 7 2023
Statut: ppublish

Résumé

Photosynthetic organisms utilize dynamic and complex networks of pigments bound within light-harvesting complexes to transfer solar energy from antenna complexes to reaction centers. Understanding the principles underlying the efficiency of these energy transfer processes, and how they may be incorporated into artificial light-harvesting systems, is facilitated by the construction of easily tunable model systems. We describe a protein-based model to mimic directional energy transfer between light-harvesting complexes using a circular permutant of the tobacco mosaic virus coat protein (cpTMV), which self-assembles into a 34-monomer hollow disk. Two populations of cpTMV assemblies, one labeled with donor chromophores and another labeled with acceptor chromophores, were coupled using a direct protein-protein bioconjugation method. Using potassium ferricyanide as an oxidant, assemblies containing

Identifiants

pubmed: 37438911
doi: 10.1021/jacs.3c02577
pmc: PMC10375525
doi:

Substances chimiques

Light-Harvesting Protein Complexes 0
Amino Acids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

15827-15837

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM066698
Pays : United States

Références

Nat Commun. 2022 Apr 13;13(1):1977
pubmed: 35418573
Chemistry. 2007;13(31):8660-6
pubmed: 17849494
Bioconjug Chem. 2015 Aug 19;26(8):1590-6
pubmed: 26076186
Nanoscale. 2019 Mar 7;11(10):4147-4182
pubmed: 30806426
Nano Lett. 2018 Oct 10;18(10):6563-6569
pubmed: 30182720
Chem Commun (Camb). 2008 Mar 14;(10):1205-7
pubmed: 18309418
J Biol Eng. 2019 May 22;13:43
pubmed: 31139251
Structure. 1996 Apr 15;4(4):449-62
pubmed: 8740367
Nat Commun. 2019 Oct 10;10(1):4615
pubmed: 31601795
PLoS One. 2009 Nov 25;4(11):e8031
pubmed: 19946626
Biochemistry. 1997 Feb 25;36(8):2300-6
pubmed: 9047332
Science. 2005 Jul 15;309(5733):484-7
pubmed: 16020739
Biochemistry. 2021 Nov 9;60(44):3302-3314
pubmed: 34699186
J Phys Chem B. 2018 Dec 27;122(51):12292-12301
pubmed: 30458617
J Phys Chem B. 2022 Oct 13;126(40):7981-7991
pubmed: 36191182
Biochemistry. 2010 Mar 2;49(8):1667-77
pubmed: 20082521
J Am Chem Soc. 2011 Oct 19;133(41):16398-401
pubmed: 21919497
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12333-7
pubmed: 11607622
Small. 2023 May;19(20):e2207805
pubmed: 36811150
J Am Soc Mass Spectrom. 2022 Nov 2;33(11):2129-2137
pubmed: 36173188
Chem Commun (Camb). 2016 Aug 21;52(65):10036-9
pubmed: 27447346
ACS Nano. 2016 Jan 26;10(1):1565-71
pubmed: 26691783
J Chem Phys. 2012 Jun 28;136(24):245104
pubmed: 22755605
Biophys J. 2010 Jul 7;99(1):67-75
pubmed: 20655834
J Am Chem Soc. 2007 Mar 21;129(11):3104-9
pubmed: 17319656
Biochemistry. 2014 Apr 1;53(12):1916-24
pubmed: 24611875
J Am Chem Soc. 2021 Jan 27;143(3):1313-1317
pubmed: 33448855
Nat Plants. 2019 Aug;5(8):879-889
pubmed: 31332310
J Am Chem Soc. 2003 Jan 29;125(4):935-9
pubmed: 12537491
Nat Chem. 2016 Jul;8(7):705-10
pubmed: 27325098
Nat Rev Genet. 2021 Mar;22(3):169-184
pubmed: 33318706
J Am Chem Soc. 2011 Oct 26;133(42):16970-6
pubmed: 21967510
J Phys Chem B. 2015 Jun 11;119(23):6963-73
pubmed: 26035585
Nano Lett. 2010 Jan;10(1):181-6
pubmed: 19924865
J Phys Chem B. 2018 Feb 15;122(6):1771-1780
pubmed: 29346730
J Am Chem Soc. 2018 May 23;140(20):6278-6287
pubmed: 29741876
Biophys Rev. 2017 Mar 23;9(2):119-129
pubmed: 28424742
J Am Chem Soc. 2022 Dec 28;144(51):23368-23378
pubmed: 36525679
ACS Nano. 2018 Feb 27;12(2):1673-1679
pubmed: 29350903
Anal Biochem. 2017 Apr 1;522:1-9
pubmed: 28108168
Nat Protoc. 2007;2(10):2601-7
pubmed: 17948003
J Am Chem Soc. 2021 May 19;143(19):7342-7350
pubmed: 33939917
Angew Chem Int Ed Engl. 2019 Feb 11;58(7):2000-2004
pubmed: 30565373
Sci Rep. 2017 Mar 27;7:45245
pubmed: 28345621
Nat Rev Mol Cell Biol. 2006 Oct;7(10):775-82
pubmed: 16926858
RSC Adv. 2021 Sep 8;11(48):30041-30045
pubmed: 35480273
ACS Nano. 2021 May 25;15(5):8110-8119
pubmed: 33285072
J Histochem Cytochem. 1999 Sep;47(9):1179-88
pubmed: 10449539
Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12503-7
pubmed: 27585308
Subcell Biochem. 2016;79:111-39
pubmed: 27485220

Auteurs

Amanda J Bischoff (AJ)

Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Leo M Hamerlynck (LM)

Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Amanda J Li (AJ)

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Trevor D Roberts (TD)

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Naomi S Ginsberg (NS)

Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, California 94720, United States.
Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Matthew B Francis (MB)

Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
1.00
Algorithms Computer Simulation Models, Biological Programming Languages Humans

Classifications MeSH