Homologous Recombination Deficiency (HRD) in Cutaneous Oncology.
Humans
Female
Poly(ADP-ribose) Polymerase Inhibitors
/ pharmacology
BRCA1 Protein
/ genetics
Homologous Recombination
Carcinoma, Squamous Cell
/ drug therapy
BRCA2 Protein
/ genetics
Skin Neoplasms
/ drug therapy
Poly(ADP-ribose) Polymerases
/ genetics
Melanoma
/ drug therapy
Ovarian Neoplasms
/ genetics
DNA repair
PARP inhibitors
genomic scars
homologous recombination deficiency
immunotherapy
melanoma
skin cancer
synthetic lethality
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
28 Jun 2023
28 Jun 2023
Historique:
received:
01
06
2023
revised:
21
06
2023
accepted:
22
06
2023
medline:
17
7
2023
pubmed:
14
7
2023
entrez:
14
7
2023
Statut:
epublish
Résumé
Skin cancers, including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (SCC), and melanoma, are the most common malignancies in the United States. Loss of DNA repair pathways in the skin plays a significant role in tumorigenesis. In recent years, targeting DNA repair pathways, particularly homologous recombination deficiency (HRD), has emerged as a potential therapeutic approach in cutaneous malignancies. This review provides an overview of DNA damage and repair pathways, with a focus on HRD, and discusses major advances in targeting these pathways in skin cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors have been developed to exploit HRD in cancer cells. PARP inhibitors disrupt DNA repair mechanisms by inhibiting PARP enzymatic activity, leading to the accumulation of DNA damage and cell death. The concept of synthetic lethality has been demonstrated in HR-deficient cells, such as those with BRCA1/2 mutations, which exhibit increased sensitivity to PARP inhibitors. HRD assessment methods, including genomic scars, RAD51 foci formation, functional assays, and BRCA1/2 mutation analysis, are discussed as tools for identifying patients who may benefit from PARP inhibitor therapy. Furthermore, HRD has been implicated in the response to immunotherapy, and the combination of PARP inhibitors with immunotherapy has shown promising results. The frequency of HRD in melanoma ranges from 18% to 57%, and studies investigating the use of PARP inhibitors as monotherapy in melanoma are limited. Further research is warranted to explore the potential of PARP inhibition in melanoma treatment.
Identifiants
pubmed: 37445949
pii: ijms241310771
doi: 10.3390/ijms241310771
pmc: PMC10341889
pii:
doi:
Substances chimiques
Poly(ADP-ribose) Polymerase Inhibitors
0
BRCA1 protein, human
0
BRCA1 Protein
0
BRCA2 protein, human
0
BRCA2 Protein
0
Poly(ADP-ribose) Polymerases
EC 2.4.2.30
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Références
Nat Struct Mol Biol. 2012 Jun 10;19(7):685-692
pubmed: 22683995
J Hematol Oncol. 2022 May 18;15(1):62
pubmed: 35585646
DNA Repair (Amst). 2018 Nov;71:172-176
pubmed: 30177437
Fam Cancer. 2010 Dec;9(4):489-93
pubmed: 20809262
Minerva Stomatol. 2009 Jan-Feb;58(1-2):43-53
pubmed: 19234436
Annu Rev Biochem. 2010;79:181-211
pubmed: 20192759
Oncologist. 2020 Jan;25(1):e147-e159
pubmed: 31578273
Nat Rev Cancer. 2010 Apr;10(4):293-301
pubmed: 20200537
Ther Adv Med Oncol. 2020 Jul 24;12:1758835920944116
pubmed: 32782491
Breast Cancer Res. 2014 Jun 03;16(3):211
pubmed: 25093514
Oncogene. 1999 Dec 20;18(55):7844-51
pubmed: 10630637
J Clin Oncol. 2019 Oct 20;37(30):2786-2794
pubmed: 31461377
DNA Repair (Amst). 2015 Dec;36:13-18
pubmed: 26388429
Cancer Discov. 2012 Sep;2(9):798-811
pubmed: 22961666
Ann Oncol. 2018 May 1;29(5):1203-1210
pubmed: 29635390
Front Oncol. 2020 Apr 28;10:570
pubmed: 32457830
Cancer Res. 2012 Nov 1;72(21):5588-99
pubmed: 23118055
Biology (Basel). 2021 Jun 14;10(6):
pubmed: 34198473
Nucleic Acids Res. 2003 Sep 1;31(17):4959-64
pubmed: 12930944
Nat Rev Clin Oncol. 2021 Dec;18(12):773-791
pubmed: 34285417
Redox Biol. 2019 Jul;25:101084
pubmed: 30612957
CA Cancer J Clin. 2022 Jan;72(1):7-33
pubmed: 35020204
Clin Cancer Res. 2010 Nov 1;16(21):5211-21
pubmed: 20705614
Cancer Chemother Pharmacol. 2013 May;71(5):1191-9
pubmed: 23423489
Nat Rev Genet. 2006 Nov;7(11):841-50
pubmed: 17047684
N Engl J Med. 2016 Dec;375(22):2154-2164
pubmed: 27717299
J Am Acad Dermatol. 2019 Feb;80(2):303-317
pubmed: 29782900
J Am Acad Dermatol. 2018 Feb;78(2):237-247
pubmed: 29332704
JCO Precis Oncol. 2018;2018:
pubmed: 30234181
Mol Cell. 2021 Aug 5;81(15):3128-3144.e7
pubmed: 34216544
Ann Oncol. 2021 Feb;32(2):280-282
pubmed: 33308898
Cancer Chemother Pharmacol. 2019 Oct;84(4):791-798
pubmed: 31375879
Carcinogenesis. 2008 Oct;29(10):1911-9
pubmed: 18660545
Lancet Oncol. 2019 Jan;20(1):e15-e28
pubmed: 30614472
Front Immunol. 2021 Aug 31;12:721030
pubmed: 34531868
J Cancer Res Clin Oncol. 2022 Sep;148(9):2427-2435
pubmed: 34510272
Head Neck. 2018 Aug;40(8):1676-1684
pubmed: 29570891
BMC Cancer. 2020 Aug 18;20(1):775
pubmed: 32811446
J Pers Med. 2021 Jun 28;11(7):
pubmed: 34203281
Cell Chem Biol. 2017 Sep 21;24(9):1101-1119
pubmed: 28938088
N Engl J Med. 2019 Dec 19;381(25):2416-2428
pubmed: 31851799
N Engl J Med. 2019 Oct 17;381(16):1535-1546
pubmed: 31562797
Cancer Biol Ther. 2005 Dec;4(12):1409-14
pubmed: 16357511
Ann Oncol. 2015 Oct;26(10):2173-9
pubmed: 26202595
Clin Cancer Res. 2017 Dec 1;23(23):7155-7157
pubmed: 28974545
Pharmacol Res. 2021 Oct;172:105808
pubmed: 34389457
J Nucleic Acids. 2010 Dec 16;2010:592980
pubmed: 21209706
Cold Spring Harb Perspect Biol. 2013 Apr 01;5(4):a012583
pubmed: 23545420
Front Oncol. 2021 Nov 25;11:769280
pubmed: 34900718
N Engl J Med. 2017 Oct 5;377(14):1345-1356
pubmed: 28889792
Ann Oncol. 2021 Feb;32(2):279-280
pubmed: 33308899
Ugeskr Laeger. 2021 Jul 26;183(30):
pubmed: 34356025
JAMA Dermatol. 2022 May 1;158(5):495-503
pubmed: 35353115
Biochem Pharmacol. 2002 Mar 1;63(5):921-32
pubmed: 11911844
Biomed Res Int. 2022 Jul 18;2022:8549532
pubmed: 35898688
Biomed Res Int. 2019 Jun 9;2019:3689517
pubmed: 31281836
Genes (Basel). 2021 May 31;12(6):
pubmed: 34073147
Eur J Cancer. 1999 Aug;35(8):1248-57
pubmed: 10615237
N Engl J Med. 2017 Aug 10;377(6):523-533
pubmed: 28578601
MMWR Morb Mortal Wkly Rep. 2015 Jun 5;64(21):591-6
pubmed: 26042651
Methods Mol Biol. 2011;745:283-91
pubmed: 21660700
Trends Biochem Sci. 1995 Oct;20(10):405-11
pubmed: 8533153
Methods Mol Biol. 2005;291:373-84
pubmed: 15502236
Nat Commun. 2020 Jul 24;11(1):3726
pubmed: 32709856
Trends Cell Biol. 2019 Oct;29(10):820-834
pubmed: 31421928
Nat Commun. 2021 Jun 17;12(1):3636
pubmed: 34140467
Mol Cancer. 2020 Jun 20;19(1):107
pubmed: 32563252
Cancers (Basel). 2021 Sep 08;13(18):
pubmed: 34572747
Clin Cancer Res. 2022 Oct 14;28(20):4536-4550
pubmed: 35921524
J Oncol Pharm Pract. 2020 Apr;26(3):718-729
pubmed: 31902284
Front Pharmacol. 2022 Aug 12;13:968060
pubmed: 36034850
Cold Spring Harb Mol Case Stud. 2021 Oct 19;7(5):
pubmed: 34667064
Gynecol Oncol. 2019 May;153(2):217-222
pubmed: 30803719
DNA Repair (Amst). 2016 Feb;38:94-101
pubmed: 26704428
BMC Med. 2015 Aug 13;13:188
pubmed: 26268938
Methods Mol Biol. 2014;1105:439-55
pubmed: 24623246
N Engl J Med. 2021 Jun 24;384(25):2394-2405
pubmed: 34081848
Cell Res. 2008 Jan;18(1):99-113
pubmed: 18166982
Lancet Oncol. 2021 Dec;22(12):1721-1731
pubmed: 34715071
J Biol Chem. 2018 Jul 6;293(27):10512-10523
pubmed: 29247009
J Invest Dermatol. 2021 Aug;141(8):2028-2036.e2
pubmed: 33610559
Cancers (Basel). 2020 May 21;12(5):
pubmed: 32455819