Acoustic tweezers for high-throughput single-cell analysis.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
08 2023
Historique:
received: 15 09 2022
accepted: 18 04 2023
medline: 9 8 2023
pubmed: 20 7 2023
entrez: 19 7 2023
Statut: ppublish

Résumé

Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.

Identifiants

pubmed: 37468650
doi: 10.1038/s41596-023-00844-5
pii: 10.1038/s41596-023-00844-5
doi:

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2441-2458

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM145960
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM141055
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132603
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD103727
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM143439
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM135486
Pays : United States
Organisme : NIA NIH HHS
ID : R44 AG063643
Pays : United States
Organisme : NIH HHS
ID : R44 OD024963
Pays : United States
Organisme : NHLBI NIH HHS
ID : R44 HL140800
Pays : United States
Organisme : NICHD NIH HHS
ID : R21 HD102790
Pays : United States
Organisme : NCATS NIH HHS
ID : U18 TR003778
Pays : United States
Organisme : NCATS NIH HHS
ID : UH3 TR002978
Pays : United States

Informations de copyright

© 2023. Springer Nature Limited.

Références

Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548. e519 (2018).
pubmed: 29275861 doi: 10.1016/j.cell.2017.11.037
Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).
pubmed: 23051752 doi: 10.1038/nature11538
Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).
pubmed: 17303755 doi: 10.1126/science.1137904
Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441. e416 (2018).
pubmed: 30245008 pmcid: 6201245 doi: 10.1016/j.cell.2018.08.061
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373 (2010).
pubmed: 20404851 doi: 10.1038/ni.1863
Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).
pubmed: 19822763 pmcid: 2764924 doi: 10.1073/pnas.0905384106
Friedrichs, J., Helenius, J. & Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).
pubmed: 20595963 doi: 10.1038/nprot.2010.89
Chu, Y. S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).
pubmed: 15596540 pmcid: 2172605 doi: 10.1083/jcb.200403043
Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).
pubmed: 24725404 pmcid: 4123688 doi: 10.1016/j.cell.2014.02.053
Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).
doi: 10.1016/S1748-0132(06)70019-6
Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).
pubmed: 28811364 pmcid: 5625899 doi: 10.1073/pnas.1703559114
Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388 (2014).
pubmed: 24856959 doi: 10.1016/j.tibtech.2014.04.008
Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).
pubmed: 24480645 pmcid: 3954780 doi: 10.1016/j.devcel.2013.12.012
Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).
pubmed: 3320757 doi: 10.1038/330769a0
Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).
pubmed: 11463624 pmcid: 1301552 doi: 10.1016/S0006-3495(01)75740-2
Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).
doi: 10.1038/s42254-020-0215-3
Zhang, Z. & Ahmed, D. Light-driven high-precision cell adhesion kinetics. Light Sci. Appl. 11, 1–2 (2022).
pubmed: 34974515 pmcid: 8720314 doi: 10.1038/s41377-022-00963-w
Shi, Y. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).
pubmed: 29326979 pmcid: 5756665 doi: 10.1126/sciadv.aao0773
Shi, Y. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).
pubmed: 29483548 pmcid: 5827716 doi: 10.1038/s41467-018-03156-5
Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).
pubmed: 30478321 pmcid: 6314293 doi: 10.1038/s41592-018-0222-9
Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA 112, 43–48 (2015).
pubmed: 25535339 doi: 10.1073/pnas.1422068112
Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).
pubmed: 26522429 doi: 10.1038/ncomms9686
Collins, D. J. et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2, e1600089 (2016).
pubmed: 27453940 pmcid: 4956186 doi: 10.1126/sciadv.1600089
Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).
pubmed: 23010952 doi: 10.1039/c2lc40612h
Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).
pubmed: 24449879 pmcid: 3918756 doi: 10.1073/pnas.1312171111
Wang, Y. et al. A rapid and controllable acoustothermal microheater using thin film surface acoustic waves. Sens. Actuator A Phys. 318, 112508 (2021).
doi: 10.1016/j.sna.2020.112508
Tian, Z. et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).
pubmed: 31172021 pmcid: 6544454 doi: 10.1126/sciadv.aau6062
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Prim. 2, 30 (2022).
doi: 10.1038/s43586-022-00109-7
Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).
pubmed: 25419961 doi: 10.1038/nmeth.3183
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).
pubmed: 35332292 pmcid: 9200603 doi: 10.1038/s41563-022-01210-8
Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009).
pubmed: 19122668 pmcid: 3251011 doi: 10.1038/nmeth.1290
Cermak, N. et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052–1059 (2016).
pubmed: 27598230 pmcid: 5064867 doi: 10.1038/nbt.3666
Zhang, S.-Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 36, 1156–1159 (2018).
doi: 10.1038/nbt.4282
Alapan, Y. et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019).
doi: 10.1146/annurev-control-053018-023803
Mulvana, H., Cochran, S. & Hill, M. Ultrasound assisted particle and cell manipulation on-chip. Adv. Drug Deliv. Rev. 65, 1600–1610 (2013).
pubmed: 23906935 doi: 10.1016/j.addr.2013.07.016
Neužil, P., Giselbrecht, S., Länge, K., Huang, T. J. & Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11, 620–632 (2012).
pmcid: 6493334 doi: 10.1038/nrd3799
Franke, T., Braunmüller, S., Schmid, L., Wixforth, A. & Weitz, D. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010).
pubmed: 20221569 doi: 10.1039/b915522h
Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649, 141–157 (2009).
pubmed: 19699390 doi: 10.1016/j.aca.2009.07.017
Wiklund, M. & Hertz, H. M. Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6, 1279–1292 (2006).
pubmed: 17102841 doi: 10.1039/b609184a
Reboud, J. et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl Acad. Sci. USA 109, 15162–15167 (2012).
pubmed: 22949692 pmcid: 3458325 doi: 10.1073/pnas.1206055109
Garg, N. et al. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4, 1–9 (2018).
doi: 10.1038/micronano.2017.85
Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).
pubmed: 30993201 pmcid: 6461452 doi: 10.1126/sciadv.aav1967
Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).
doi: 10.1146/annurev-fluid-010313-141418
Huang, P. H. et al. Acoustofluidic synthesis of particulate nanomaterials. Adv. Sci. 6, 1900913 (2019).
doi: 10.1002/advs.201900913
Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).
pubmed: 33523836 pmcid: 7775782 doi: 10.1126/sciadv.abc0467
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016).
pubmed: 27652563 doi: 10.1038/nature19755
Ahmed, D. et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8, 1–8 (2017).
doi: 10.1038/s41467-017-00845-5
Fan, X.-D., Zou, Z. & Zhang, L. Acoustic vortices in inhomogeneous media. Phys. Rev. Res. 1, 032014 (2019).
doi: 10.1103/PhysRevResearch.1.032014
Glynne-Jones, P., Boltryk, R. J., Harris, N. R., Cranny, A. W. & Hill, M. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50, 68–75 (2010).
pubmed: 19709711 doi: 10.1016/j.ultras.2009.07.010
Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018).
pubmed: 29437423 doi: 10.1103/PhysRevLett.120.044301
Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).
pubmed: 31843276 pmcid: 6943372 doi: 10.1016/j.jmoldx.2019.08.004
Hao, N. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 196, 113730 (2022).
pubmed: 34736099 doi: 10.1016/j.bios.2021.113730
Ren, L. et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter. Small 14, 1801996 (2018).
doi: 10.1002/smll.201801996
Zhang, J. et al. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. Lab Chip 19, 984–992 (2019).
pubmed: 30768117 pmcid: 6659422 doi: 10.1039/C8LC01012A
Schuetz, M. J. et al. Acoustic traps and lattices for electrons in semiconductors. Phys. Rev. X 7, 041019 (2017).
Schülein, F. J. et al. Fourier synthesis of radiofrequency nanomechanical pulses with different shapes. Nat. Nanotechnol. 10, 512–516 (2015).
pubmed: 25915197 doi: 10.1038/nnano.2015.72
Zhao, P. et al. Acoustically induced giant synthetic hall voltages in graphene. Phys. Rev. Lett. 128, 256601 (2022).
pubmed: 35802443 doi: 10.1103/PhysRevLett.128.256601
Krenner, H. J. & Westerhausen, C. Handy nanoquakes. Nat. Mater. 21, 499–501 (2022).
pubmed: 35505228 doi: 10.1038/s41563-022-01236-y
Sun, W., Gao, X., Lei, H., Wang, W. & Cao, Y. Biophysical approaches for applying and measuring biological forces. Adv. Sci. 9, 2105254 (2022).
doi: 10.1002/advs.202105254
Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).
pubmed: 18511917 pmcid: 3397402 doi: 10.1038/nmeth.1218
Maître, J.-L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).
pubmed: 22923438 doi: 10.1126/science.1225399
González-Bermúdez, B., Guinea, G. V. & Plaza, G. R. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019).
pubmed: 30683304 pmcid: 6383002 doi: 10.1016/j.bpj.2019.01.004
Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).
pubmed: 10609514 doi: 10.1016/S0021-9290(99)00175-X
Zhang, J. et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER). Sci. Adv. 8, eade0640 (2022).
pubmed: 36417505 pmcid: 9683722 doi: 10.1126/sciadv.ade0640
Leach, J. et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Phys. Rev. E 79, 026301 (2009).
doi: 10.1103/PhysRevE.79.026301
Yang, Z. et al. Light sheet microscopy with acoustic sample confinement. Nat. Commun. 10, 1–8 (2019).
Baudoin, M. et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 1–10 (2020).
doi: 10.1038/s41467-020-18000-y
Thalhammer, G., McDougall, C., MacDonald, M. P. & Ritsch-Marte, M. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging. Lab Chip 16, 1523–1532 (2016).
pubmed: 27025398 pmcid: 5058352 doi: 10.1039/C6LC00182C
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).
doi: 10.1038/natrevmats.2015.11
Hou, J., Li, M. & Song, Y. Recent advances in colloidal photonic crystal sensors: materials, structures and analysis methods. Nano Today 22, 132–144 (2018).
doi: 10.1016/j.nantod.2018.08.008
Lim, M. X., Souslov, A., Vitelli, V. & Jaeger, H. M. Cluster formation by acoustic forces and active fluctuations in levitated granular matter. Nat. Phys. 15, 460–464 (2019).
doi: 10.1038/s41567-019-0440-9
Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).
pubmed: 26315444 doi: 10.1126/science.1253751

Auteurs

Shujie Yang (S)

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Joseph Rufo (J)

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Ruoyu Zhong (R)

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Joseph Rich (J)

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Zeyu Wang (Z)

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Luke P Lee (LP)

Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. lplee@bwh.harvard.edu.
Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA. lplee@bwh.harvard.edu.
Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea. lplee@bwh.harvard.edu.

Tony Jun Huang (TJ)

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. tony.huang@duke.edu.

Articles similaires

Sound Neural Networks, Computer Acoustics Algorithms Humans

Gender parity in African science.

Kwabena Boahen Asare, Fatima Cody Stanford
1.00
Humans Female Science Mathematics Technology

Acoustic cognitive map-based navigation in echolocating bats.

Aya Goldshtein, Xing Chen, Eran Amichai et al.
1.00
Animals Chiroptera Echolocation Spatial Navigation Homing Behavior
Animals Growth Plate Isocitrate Dehydrogenase Mice Single-Cell Analysis

Classifications MeSH