Acoustic tweezers for high-throughput single-cell analysis.
Journal
Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
15
09
2022
accepted:
18
04
2023
medline:
9
8
2023
pubmed:
20
7
2023
entrez:
19
7
2023
Statut:
ppublish
Résumé
Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.
Identifiants
pubmed: 37468650
doi: 10.1038/s41596-023-00844-5
pii: 10.1038/s41596-023-00844-5
doi:
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2441-2458Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM145960
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM141055
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132603
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD103727
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM143439
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM135486
Pays : United States
Organisme : NIA NIH HHS
ID : R44 AG063643
Pays : United States
Organisme : NIH HHS
ID : R44 OD024963
Pays : United States
Organisme : NHLBI NIH HHS
ID : R44 HL140800
Pays : United States
Organisme : NICHD NIH HHS
ID : R21 HD102790
Pays : United States
Organisme : NCATS NIH HHS
ID : U18 TR003778
Pays : United States
Organisme : NCATS NIH HHS
ID : UH3 TR002978
Pays : United States
Informations de copyright
© 2023. Springer Nature Limited.
Références
Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548. e519 (2018).
pubmed: 29275861
doi: 10.1016/j.cell.2017.11.037
Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).
pubmed: 23051752
doi: 10.1038/nature11538
Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).
pubmed: 17303755
doi: 10.1126/science.1137904
Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441. e416 (2018).
pubmed: 30245008
pmcid: 6201245
doi: 10.1016/j.cell.2018.08.061
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373 (2010).
pubmed: 20404851
doi: 10.1038/ni.1863
Hosseini, B. H. et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc. Natl Acad. Sci. USA 106, 17852–17857 (2009).
pubmed: 19822763
pmcid: 2764924
doi: 10.1073/pnas.0905384106
Friedrichs, J., Helenius, J. & Muller, D. J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).
pubmed: 20595963
doi: 10.1038/nprot.2010.89
Chu, Y. S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).
pubmed: 15596540
pmcid: 2172605
doi: 10.1083/jcb.200403043
Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).
pubmed: 24725404
pmcid: 4123688
doi: 10.1016/j.cell.2014.02.053
Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).
doi: 10.1016/S1748-0132(06)70019-6
Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).
pubmed: 28811364
pmcid: 5625899
doi: 10.1073/pnas.1703559114
Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388 (2014).
pubmed: 24856959
doi: 10.1016/j.tibtech.2014.04.008
Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).
pubmed: 24480645
pmcid: 3954780
doi: 10.1016/j.devcel.2013.12.012
Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).
pubmed: 3320757
doi: 10.1038/330769a0
Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).
pubmed: 11463624
pmcid: 1301552
doi: 10.1016/S0006-3495(01)75740-2
Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).
doi: 10.1038/s42254-020-0215-3
Zhang, Z. & Ahmed, D. Light-driven high-precision cell adhesion kinetics. Light Sci. Appl. 11, 1–2 (2022).
pubmed: 34974515
pmcid: 8720314
doi: 10.1038/s41377-022-00963-w
Shi, Y. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).
pubmed: 29326979
pmcid: 5756665
doi: 10.1126/sciadv.aao0773
Shi, Y. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).
pubmed: 29483548
pmcid: 5827716
doi: 10.1038/s41467-018-03156-5
Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).
pubmed: 30478321
pmcid: 6314293
doi: 10.1038/s41592-018-0222-9
Guo, F. et al. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl Acad. Sci. USA 112, 43–48 (2015).
pubmed: 25535339
doi: 10.1073/pnas.1422068112
Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).
pubmed: 26522429
doi: 10.1038/ncomms9686
Collins, D. J. et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2, e1600089 (2016).
pubmed: 27453940
pmcid: 4956186
doi: 10.1126/sciadv.1600089
Muller, P. B., Barnkob, R., Jensen, M. J. H. & Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12, 4617–4627 (2012).
pubmed: 23010952
doi: 10.1039/c2lc40612h
Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).
pubmed: 24449879
pmcid: 3918756
doi: 10.1073/pnas.1312171111
Wang, Y. et al. A rapid and controllable acoustothermal microheater using thin film surface acoustic waves. Sens. Actuator A Phys. 318, 112508 (2021).
doi: 10.1016/j.sna.2020.112508
Tian, Z. et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 5, eaau6062 (2019).
pubmed: 31172021
pmcid: 6544454
doi: 10.1126/sciadv.aau6062
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Prim. 2, 30 (2022).
doi: 10.1038/s43586-022-00109-7
Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).
pubmed: 25419961
doi: 10.1038/nmeth.3183
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).
pubmed: 35332292
pmcid: 9200603
doi: 10.1038/s41563-022-01210-8
Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009).
pubmed: 19122668
pmcid: 3251011
doi: 10.1038/nmeth.1290
Cermak, N. et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052–1059 (2016).
pubmed: 27598230
pmcid: 5064867
doi: 10.1038/nbt.3666
Zhang, S.-Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 36, 1156–1159 (2018).
doi: 10.1038/nbt.4282
Alapan, Y. et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019).
doi: 10.1146/annurev-control-053018-023803
Mulvana, H., Cochran, S. & Hill, M. Ultrasound assisted particle and cell manipulation on-chip. Adv. Drug Deliv. Rev. 65, 1600–1610 (2013).
pubmed: 23906935
doi: 10.1016/j.addr.2013.07.016
Neužil, P., Giselbrecht, S., Länge, K., Huang, T. J. & Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11, 620–632 (2012).
pmcid: 6493334
doi: 10.1038/nrd3799
Franke, T., Braunmüller, S., Schmid, L., Wixforth, A. & Weitz, D. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10, 789–794 (2010).
pubmed: 20221569
doi: 10.1039/b915522h
Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649, 141–157 (2009).
pubmed: 19699390
doi: 10.1016/j.aca.2009.07.017
Wiklund, M. & Hertz, H. M. Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6, 1279–1292 (2006).
pubmed: 17102841
doi: 10.1039/b609184a
Reboud, J. et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl Acad. Sci. USA 109, 15162–15167 (2012).
pubmed: 22949692
pmcid: 3458325
doi: 10.1073/pnas.1206055109
Garg, N. et al. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4, 1–9 (2018).
doi: 10.1038/micronano.2017.85
Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).
pubmed: 30993201
pmcid: 6461452
doi: 10.1126/sciadv.aav1967
Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).
doi: 10.1146/annurev-fluid-010313-141418
Huang, P. H. et al. Acoustofluidic synthesis of particulate nanomaterials. Adv. Sci. 6, 1900913 (2019).
doi: 10.1002/advs.201900913
Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).
pubmed: 33523836
pmcid: 7775782
doi: 10.1126/sciadv.abc0467
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016).
pubmed: 27652563
doi: 10.1038/nature19755
Ahmed, D. et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8, 1–8 (2017).
doi: 10.1038/s41467-017-00845-5
Fan, X.-D., Zou, Z. & Zhang, L. Acoustic vortices in inhomogeneous media. Phys. Rev. Res. 1, 032014 (2019).
doi: 10.1103/PhysRevResearch.1.032014
Glynne-Jones, P., Boltryk, R. J., Harris, N. R., Cranny, A. W. & Hill, M. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50, 68–75 (2010).
pubmed: 19709711
doi: 10.1016/j.ultras.2009.07.010
Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett. 120, 044301 (2018).
pubmed: 29437423
doi: 10.1103/PhysRevLett.120.044301
Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).
pubmed: 31843276
pmcid: 6943372
doi: 10.1016/j.jmoldx.2019.08.004
Hao, N. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 196, 113730 (2022).
pubmed: 34736099
doi: 10.1016/j.bios.2021.113730
Ren, L. et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter. Small 14, 1801996 (2018).
doi: 10.1002/smll.201801996
Zhang, J. et al. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. Lab Chip 19, 984–992 (2019).
pubmed: 30768117
pmcid: 6659422
doi: 10.1039/C8LC01012A
Schuetz, M. J. et al. Acoustic traps and lattices for electrons in semiconductors. Phys. Rev. X 7, 041019 (2017).
Schülein, F. J. et al. Fourier synthesis of radiofrequency nanomechanical pulses with different shapes. Nat. Nanotechnol. 10, 512–516 (2015).
pubmed: 25915197
doi: 10.1038/nnano.2015.72
Zhao, P. et al. Acoustically induced giant synthetic hall voltages in graphene. Phys. Rev. Lett. 128, 256601 (2022).
pubmed: 35802443
doi: 10.1103/PhysRevLett.128.256601
Krenner, H. J. & Westerhausen, C. Handy nanoquakes. Nat. Mater. 21, 499–501 (2022).
pubmed: 35505228
doi: 10.1038/s41563-022-01236-y
Sun, W., Gao, X., Lei, H., Wang, W. & Cao, Y. Biophysical approaches for applying and measuring biological forces. Adv. Sci. 9, 2105254 (2022).
doi: 10.1002/advs.202105254
Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).
pubmed: 18511917
pmcid: 3397402
doi: 10.1038/nmeth.1218
Maître, J.-L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).
pubmed: 22923438
doi: 10.1126/science.1225399
González-Bermúdez, B., Guinea, G. V. & Plaza, G. R. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019).
pubmed: 30683304
pmcid: 6383002
doi: 10.1016/j.bpj.2019.01.004
Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).
pubmed: 10609514
doi: 10.1016/S0021-9290(99)00175-X
Zhang, J. et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER). Sci. Adv. 8, eade0640 (2022).
pubmed: 36417505
pmcid: 9683722
doi: 10.1126/sciadv.ade0640
Leach, J. et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Phys. Rev. E 79, 026301 (2009).
doi: 10.1103/PhysRevE.79.026301
Yang, Z. et al. Light sheet microscopy with acoustic sample confinement. Nat. Commun. 10, 1–8 (2019).
Baudoin, M. et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat. Commun. 11, 1–10 (2020).
doi: 10.1038/s41467-020-18000-y
Thalhammer, G., McDougall, C., MacDonald, M. P. & Ritsch-Marte, M. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging. Lab Chip 16, 1523–1532 (2016).
pubmed: 27025398
pmcid: 5058352
doi: 10.1039/C6LC00182C
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834
pmcid: 5554542
doi: 10.1038/nmeth.2089
Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).
doi: 10.1038/natrevmats.2015.11
Hou, J., Li, M. & Song, Y. Recent advances in colloidal photonic crystal sensors: materials, structures and analysis methods. Nano Today 22, 132–144 (2018).
doi: 10.1016/j.nantod.2018.08.008
Lim, M. X., Souslov, A., Vitelli, V. & Jaeger, H. M. Cluster formation by acoustic forces and active fluctuations in levitated granular matter. Nat. Phys. 15, 460–464 (2019).
doi: 10.1038/s41567-019-0440-9
Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).
pubmed: 26315444
doi: 10.1126/science.1253751