MR-guided HDR prostate brachytherapy with teleoperated steerable needles.


Journal

Journal of robotic surgery
ISSN: 1863-2491
Titre abrégé: J Robot Surg
Pays: England
ID NLM: 101300401

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 26 05 2023
accepted: 08 07 2023
medline: 11 9 2023
pubmed: 22 7 2023
entrez: 22 7 2023
Statut: ppublish

Résumé

Conformity of tumour volumes and dose plans in prostate brachytherapy (BT) can be constrained by unwanted needle deflections, needle access restrictions and visualisation limitations. This work validates the feasibility of teleoperated robotic control of an active steerable needle using magnetic resonance (MR) for guidance. With this system, perturbations can be counteracted and critical structures can be circumvented to access currently inaccessible areas. The system comprises of (1) a novel steerable needle, (2) the minimally invasive robotics in an MR environment (MIRIAM) system, and (3) the daVinci Research Kit (dVRK). MR scans provide visual feedback to the operator controlling the dVRK. Needle steering is performed along curved trajectories to avoid the urethra towards targets (representing tumour tissue) in a prostate phantom with a targeting error of 1.2 ± 1.0 mm. This work shows the potential clinical applicability of active needle steering for prostate BT with a teleoperated robotic system in an MR environment.

Identifiants

pubmed: 37480476
doi: 10.1007/s11701-023-01676-x
pii: 10.1007/s11701-023-01676-x
pmc: PMC10492758
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2461-2469

Informations de copyright

© 2023. The Author(s).

Références

Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708
doi: 10.3322/caac.21708 pubmed: 35020204
Aluwini S, Busser WMH, Ghidey W, Boormans JL, Kirkels WJ, Jansen PP et al (2015) Toxicity and quality of life after high-dose-rate brachytherapy as monotherapy for low- and intermediate-risk prostate cancer. Radiother Oncol 117:252–257. https://doi.org/10.1016/j.radonc.2015.09.019
doi: 10.1016/j.radonc.2015.09.019 pubmed: 26409832
Koukourakis G, Kelekis N, Armonis V, Kouloulias V (2009) Brachytherapy for prostate cancer: a systematic review. Adv Urol. https://doi.org/10.1155/2009/327945
doi: 10.1155/2009/327945 pubmed: 19730753 pmcid: 2735748
Siebert F-A, Hirt M, Niehoff P, Kovcs G (2009) Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers. Med Phys 36:3406–3412. https://doi.org/10.1118/1.3157107
doi: 10.1118/1.3157107 pubmed: 19746773
Smeenge M, Mischi M, Laguna Pes MP, de la Rosette JJMCH, Wijkstra H (2011) Novel contrast-enhanced ultrasound imaging in prostate cancer. World J Urol 29:581–587. https://doi.org/10.1007/s00345-011-0747-3
Batchelar D, Gaztañaga M, Schmid M, Araujo C, Bachand F, Crook J (2014) Validation study of ultrasound-based high-dose-rate prostate brachytherapy planning compared with CT-based planning. Brachytherapy 13:75–79. https://doi.org/10.1016/j.brachy.2013.08.004
doi: 10.1016/j.brachy.2013.08.004 pubmed: 24080299
Schmid MG, Crook J, Batchelar D, Halperin R (2011) A phantom study of CT-validation of ultrasound-based planning for HDR prostate brachytherapy. Brachytherapy 10:S67–S68. https://doi.org/10.1016/j.brachy.2011.02.003
doi: 10.1016/j.brachy.2011.02.003
Tanderup K, Viswanathan AN, Kirisits C, Frank SJ (2014) Magnetic resonance image guided brachytherapy. Semin Radiat Oncol 24:181–191. https://doi.org/10.1016/j.semradonc.2014.02.007
doi: 10.1016/j.semradonc.2014.02.007 pubmed: 24931089 pmcid: 4147854
Whitaker M, Hruby G, Lovett A, Patanjali N (2011) Prostate HDR brachytherapy catheter displacement between planning and treatment delivery. Radiother Oncol 101:490–494. https://doi.org/10.1016/j.radonc.2011.08.004
doi: 10.1016/j.radonc.2011.08.004 pubmed: 21889221
de Vries M, Wilby SL, Palmer AL, Polak W, Hea IO, Hodgson D et al (2022) Overcoming pubic arch interference in prostate brachytherapy using steerable needles. Contemp Brachytherapy. https://doi.org/10.5114/jcb.2022.121562
doi: 10.5114/jcb.2022.121562
Monfaredi R, Cleary K, Sharma K (2018) MRI robots for needle-based interventions: systems and technology. Ann Biomed Eng 46:1479–1497. https://doi.org/10.1007/s10439-018-2075-x
doi: 10.1007/s10439-018-2075-x pubmed: 29922958 pmcid: 6203643
Krieger A, Susil RC, Fichtinger G, Atalar E, Whitcomb LL (2004) Design of a novel MRI compatible manipulator for image guided prostate intervention. Proc - IEEE Int Conf Robot Autom 2004:377–382. https://doi.org/10.1109/robot.2004.1307179
doi: 10.1109/robot.2004.1307179
Stoianovic D, Jun C, Lim S, Li P, Petrisor D, Fricke S et al (2018) Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans Biomed Eng 65:165–177. https://doi.org/10.1109/TBME.2017.2697766
doi: 10.1109/TBME.2017.2697766
Moreira P, Van De Steeg G, Krabben T, Zandman J, Hekman EEG, Van Der Heijden F et al (2017) The MIRIAM Robot: a novel robotic system for MR-guided needle insertion in the prostate. J Med Robot Res 2:1–13. https://doi.org/10.1142/S2424905X17500064
doi: 10.1142/S2424905X17500064
Dhaliwal SS, Chettibi T, Wilby S, Polak W, Palmer AL, Reynaert N et al (2021) Review of clinical and technological consideration for MRI-guided robotic prostate brachytherapy. IEEE Trans Med Robot Bionics 3:583–605. https://doi.org/10.1109/tmrb.2021.3097127
doi: 10.1109/tmrb.2021.3097127
Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L et al (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68:1313–1317. https://doi.org/10.1016/j.urology.2006.08.1089
doi: 10.1016/j.urology.2006.08.1089 pubmed: 17169653
Garg A, Siauw T, Berenson D, Cunha JAM, Hsu IC, Pouliot J et al (2013) Robot-guided open-loop insertion of skew-line needle arrangements for high dose rate brachytherapy. IEEE Trans Autom Sci Eng 10:948–956
doi: 10.1109/TASE.2013.2276940
Strassmann G, Olbert P, Hegele A, Richter D, Fokas E, Timmesfeld N et al (2011) Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol 187:367–372. https://doi.org/10.1007/s00066-011-2185-yLB-21603993
doi: 10.1007/s00066-011-2185-yLB-21603993 pubmed: 21603993
Szlag M, Ślosarek K, Rembielak A, Białas B, Fijałkowski M, Bystrzycka J (2008) Real-time brachytherapy for prostate cancer - Implant analysis. Reports Pract Oncol Radiother 13:9–14. https://doi.org/10.1016/S1507-1367(10)60076-4
doi: 10.1016/S1507-1367(10)60076-4
Smith RL, Hanlon M, Panettieri V, Millar JL, Matheson B, Haworth A et al (2018) An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging. Brachytherapy 17:111–121. https://doi.org/10.1016/j.brachy.2017.08.004
doi: 10.1016/j.brachy.2017.08.004 pubmed: 28958735
Podder TK, Beaulieu L, Caldwell B, Cormack RA, Crass JB, Dicker AP et al (2014) AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192. Med Phys. https://doi.org/10.1118/1.4895013
doi: 10.1118/1.4895013 pubmed: 25281939
van den Bosch MR, Lips IM, Lagerburg V, van Vulpen M, Lagendijk JJW, Moerland MA (2008) Feasibility of adequate dose coverage in permanent prostate brachytherapy using divergent needle insertion methods. Radiother Oncol 86:120–125. https://doi.org/10.1016/j.radonc.2007.10.037
doi: 10.1016/j.radonc.2007.10.037 pubmed: 18037520
Ryu B, Bax J, Edirisinge C, Lewis C, Chen J, D’Souza D et al (2012) Prostate brachytherapy with oblique needles to treat large glands and overcome pubic arch interference. Int J Radiat Oncol Biol Phys 83:1463–1472. https://doi.org/10.1016/j.ijrobp.2011.10.012
doi: 10.1016/j.ijrobp.2011.10.012 pubmed: 22270172
Cunha JAM, Hsu I-C, Pouliot J (2009) Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns. Med Phys 36:233–239. https://doi.org/10.1118/1.3041166
doi: 10.1118/1.3041166 pubmed: 19235391
Gibbons EP, Smith RP, Beriwal S, Krishna K, Benoit RM (2009) Overcoming pubic arch interference with free-hand needle placement in men undergoing prostate brachytherapy. Brachytherapy 8:74–78. https://doi.org/10.1016/j.brachy.2008.04.007
doi: 10.1016/j.brachy.2008.04.007 pubmed: 18793877
Lagerburg V, Moerland MA, Konings MK, Van De Vosse RE, Lagendijk JJW, Battermann JJ (2006) Development of a tapping device: A new needle insertion method for prostate brachytherapy. Phys Med Biol 51:891–902. https://doi.org/10.1088/0031-9155/51/4/009
doi: 10.1088/0031-9155/51/4/009 pubmed: 16467585
Podder TK, Clark DP, Fuller D, Sherman J, Ng WS, Liao L et al (2005) Effects of velocity modulation during surgical needle insertion. Annu Int Conf IEEE Eng Med Biol - Proc 7:5766–5770. https://doi.org/10.1109/iembs.2005.1615798
doi: 10.1109/iembs.2005.1615798
Moreira P, Misra S (2015) Biomechanics-based curvature estimation for ultrasound-guided flexible needle steering in biological tissues. Ann Biomed Eng 43:1716–1726. https://doi.org/10.1007/s10439-014-1203-5
doi: 10.1007/s10439-014-1203-5 pubmed: 25465619
de Vries M, Sikorski J, Misra S, van den Dobbelsteen JJ (2021) Axially rigid steerable needle with compliant active tip control. PLoS ONE 16:e0261089. https://doi.org/10.1371/journal.pone.0261089
doi: 10.1371/journal.pone.0261089 pubmed: 34914777 pmcid: 8675730
van de Berg NJ, van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ (2015) Design choices in needle steering - a review. IEEE/ASME Trans Mechatron 20:2172–2183. https://doi.org/10.1109/TMECH.2014.2365999
doi: 10.1109/TMECH.2014.2365999
Yamada A, Naka S, Nitta N, Morikawa S, Tani T (2018) A loop-shaped flexible mechanism for robotic needle steering. IEEE Robot Autom Lett 3:648–655. https://doi.org/10.1109/LRA.2017.2779273
doi: 10.1109/LRA.2017.2779273
Li Y, Yang C, Bahl A, Persad R, Melhuish C (2022) A review on the techniques used in prostate brachytherapy. Cogn Comput Syst 4:317–328. https://doi.org/10.1049/ccs2.12067
doi: 10.1049/ccs2.12067
Konh B, Padasdao B, Batsaikhan Z, Lederer J (2021) Steering a tendon-driven needle in high-dose-rate prostate brachytherapy for patients with pubic arch interference. Int Symp Med Robot ISMR. https://doi.org/10.1109/ISMR48346.2021.9661565
doi: 10.1109/ISMR48346.2021.9661565 pubmed: 36643870
Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, Dimaio SP (2014) An open-source research kit for the daVinci® Surgical System. Proc IEEE Int Conf Robot Autom. https://doi.org/10.1109/ICRA.2014.6907809
doi: 10.1109/ICRA.2014.6907809
D’Ettorre C, Mariani A, Stilli A, Rodriguez Y Baena F, Valdastri P, Deguet A et al. (2021) Accelerating surgical robotics research: a review of 10 years with the da Vinci Research Kit. IEEE Robot Autom Mag 28:56–78. https://doi.org/10.1109/MRA.2021.3101646
Shaaer A, Alrashidi S, Chung H, Loblaw A, Morton G, Paudel M et al (2021) Multipurpose ultrasound-based prostate phantom for use in interstitial brachytherapy. Brachytherapy 20:1139–1145. https://doi.org/10.1016/j.brachy.2021.07.003
doi: 10.1016/j.brachy.2021.07.003 pubmed: 34420861
Tokuda J, Song S-E, Fischer GS, Seifabadi R, Cho BJ, Tuncali K et al (2012) Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions NIH Public Access. Int J Comput Assist Radiol Surg 7:949–957. https://doi.org/10.1007/s11548-012-0750-1
doi: 10.1007/s11548-012-0750-1 pubmed: 22678723 pmcid: 3692285
Borghede G, Hedelin H, Holmäng S, Johansson KA, Sernbo G, Mercke C (1997) Irradiation of localized prostatic carcinoma with a combination of high dose rate iridium-192 brachytherapy and external beam radiotherapy with three target definitions and dose levels inside the prostate gland. Radiother Oncol 44:245–250. https://doi.org/10.1016/S0167-8140(97)00122-9
doi: 10.1016/S0167-8140(97)00122-9 pubmed: 9380823
Dhaliwal SS, Wilby S, Vries M De, Boni KB, Firouzy S, Navarro SE et al. (2021) CoBra robot for localized cancer treatment and diagnosis under real-time MRI guidance HAL Id : hal-03321170 2021:8–10
Wang Y, Truong TN, Yen C, Bilecen D, Watts R, Trost DW et al (2003) Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents. Magn Reson Med 49:972–976. https://doi.org/10.1002/mrm.10450
doi: 10.1002/mrm.10450 pubmed: 12704782
Melzer A, Michitsch S, Konak S, Schaefers G, Bertsch T (2004) Nitinol in magnetic resonance imaging. Minim Invasive Ther Allied Technol 13:261–271. https://doi.org/10.1080/13645700410020269
doi: 10.1080/13645700410020269 pubmed: 16754135

Auteurs

M de Vries (M)

Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands. M.devries-2@tudelft.nl.

M Wijntjes (M)

Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.

J Sikorski (J)

Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.

P Moreira (P)

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

N J van de Berg (NJ)

Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
Department of Gynaecological Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

J J van den Dobbelsteen (JJ)

Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.

S Misra (S)

Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH