Gene expression study of host-human T-cell leukaemia virus type 1 (HTLV-1) interactions: adult T-cell leukaemia/lymphoma (ATLL).


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 27 03 2023
accepted: 21 06 2023
medline: 29 8 2023
pubmed: 22 7 2023
entrez: 22 7 2023
Statut: ppublish

Résumé

In HTLV-1-associated malignant disease, adult T-cell leukaemia/lymphoma (ATLL), the interaction of virus and host was evaluated at the chemokines gene expression level. Also, IL-1β and Caspase-1 expressions were evaluated to investigate the importance of pyroptosis in disease development and progression. The expression of host CCR6 and CXCR-3 and the HTLV-1 proviral load (PVL), Tax, and HBZ were assessed in 17 HTLV-1 asymptomatic carriers (ACs) and 12 ATLL patients using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), TaqMan method. Moreover, RT-qPCR, SYBR Green assay were performed to measure Caspase-1 and IL-1β expression. HTLV-1-Tax did not express in 91.5% of the ATLLs, while HBZ was expressed in all ATLLs. The expression of CXCR3 dramatically decreased in ATLLs compared to ACs (p = 0.001). The expression of CCR6 was lower in ATLLs than ACs (p = 0.04). The mean of PVL in ATLL patients was statistically higher than ACs (p = 0.001). Furthermore, the expression of the IL-1β between ATLLs and ACs was not statistically significant (p = 0.4). In contrast, there was a meaningful difference between Caspase-1 in ATLLs and ACs (p = 0.02). The present study indicated that in the first stage of ATLL malignancy toward acute lymphomatous, CXCR3 and its progression phase may target the pyroptosis process. Mainly, HBZ expression could be a novel therapeutic target.

Sections du résumé

BACKGROUND BACKGROUND
In HTLV-1-associated malignant disease, adult T-cell leukaemia/lymphoma (ATLL), the interaction of virus and host was evaluated at the chemokines gene expression level. Also, IL-1β and Caspase-1 expressions were evaluated to investigate the importance of pyroptosis in disease development and progression.
METHODS AND RESULTS RESULTS
The expression of host CCR6 and CXCR-3 and the HTLV-1 proviral load (PVL), Tax, and HBZ were assessed in 17 HTLV-1 asymptomatic carriers (ACs) and 12 ATLL patients using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), TaqMan method. Moreover, RT-qPCR, SYBR Green assay were performed to measure Caspase-1 and IL-1β expression. HTLV-1-Tax did not express in 91.5% of the ATLLs, while HBZ was expressed in all ATLLs. The expression of CXCR3 dramatically decreased in ATLLs compared to ACs (p = 0.001). The expression of CCR6 was lower in ATLLs than ACs (p = 0.04). The mean of PVL in ATLL patients was statistically higher than ACs (p = 0.001). Furthermore, the expression of the IL-1β between ATLLs and ACs was not statistically significant (p = 0.4). In contrast, there was a meaningful difference between Caspase-1 in ATLLs and ACs (p = 0.02).
CONCLUSIONS CONCLUSIONS
The present study indicated that in the first stage of ATLL malignancy toward acute lymphomatous, CXCR3 and its progression phase may target the pyroptosis process. Mainly, HBZ expression could be a novel therapeutic target.

Identifiants

pubmed: 37480512
doi: 10.1007/s11033-023-08626-8
pii: 10.1007/s11033-023-08626-8
doi:

Substances chimiques

Caspase 1 EC 3.4.22.36

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7479-7487

Subventions

Organisme : Mashhad University of Medical Sciences
ID : MUMS 971184
Organisme : Mashhad University of Medical Sciences
ID : MUMS 981133

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Gessain A, Cassar O (2012) Epidemiological aspects and World distribution of HTLV-1 infection. Front Microbiol 3:388. https://doi.org/10.3389/fmicb.2012.00388
doi: 10.3389/fmicb.2012.00388 pubmed: 23162541 pmcid: 3498738
Ahmadi Ghezeldasht S, Shirdel A, Assarehzadegan MA, Hassannia T, Rahimi H, Miri R et al (2013) Human T lymphotropic virus type I (HTLV-I) oncogenesis: molecular aspects of virus and host interactions in pathogenesis of adult T cell Leukemia/Lymphoma (ATL). Iran J Basic Med Sci 16(3):179–195
pubmed: 24470860 pmcid: 3881257
Mota TM, Jones RB (2019) HTLV-1 as a model for virus and host coordinated immunoediting. Front Immunol 10:2259. https://doi.org/10.3389/fimmu.2019.02259
doi: 10.3389/fimmu.2019.02259 pubmed: 31616431 pmcid: 6768981
Lemoine FJ, Wycuff DR, Marriott SJ (2001) Transcriptional activity of HTLV-I Tax influences the expression of marker genes associated with cellular transformation. Dis Markers 17(3):129–137. https://doi.org/10.1155/2001/263567
doi: 10.1155/2001/263567 pubmed: 11790876
Saito M, Matsuzaki T, Satou Y, Yasunaga J, Saito K, Arimura K et al (2009) In vivo, expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 6:19. https://doi.org/10.1186/1742-4690-6-19
doi: 10.1186/1742-4690-6-19 pubmed: 19228429 pmcid: 2653460
Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, Rezaee SA (2023) Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukaemia/lymphoma (ATLL). Critical Reviews in Clinical Laboratory Sciences. :1–23. https://doi.org/10.1080/10408363.2022.2157791
Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defence and immunity. Annu Rev Immunol 32:659–702
doi: 10.1146/annurev-immunol-032713-120145 pubmed: 24655300
Tang P, Wang JM (2018) Chemokines: the past, the present and the future. Cell Mol Immunol 15(4):295–298. https://doi.org/10.1038/cmi.2018.9
doi: 10.1038/cmi.2018.9 pubmed: 29578534 pmcid: 6052843
Clark-Lewis I, Mattioli I, Gong J-H, Loetscher P (2003) Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 278(1):289–295. https://doi.org/10.1074/jbc.M209470200
doi: 10.1074/jbc.M209470200 pubmed: 12417585
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C et al (2019) The role of CXCR3 in neurological Diseases. Curr Neuropharmacol 17(2):142–150. https://doi.org/10.2174/1570159x15666171109161140
doi: 10.2174/1570159x15666171109161140 pubmed: 29119926 pmcid: 6343204
Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J et al (2014) CBTRUS statistical report: primary brain and central nervous system tumours diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–63. https://doi.org/10.1093/neuonc/nou223
doi: 10.1093/neuonc/nou223 pubmed: 25304271 pmcid: 4193675
Rafatpanah H, Felegari M, Azarpazhooh MR, Vakili R, Rajaei T, Hampson I et al (2017) Altered expression of CXCR3 and CCR6 and their ligands in HTLV-1 carriers and HAM/TSP patients. J Med Virol 89(8):1461–1468. https://doi.org/10.1002/jmv.24779
doi: 10.1002/jmv.24779 pubmed: 28206670
Hashikawa K, Yasumoto S, Nakashima K, Arakawa F, Kiyasu J, Kimura Y et al (2014) Microarray analysis of gene expression by the microdissected epidermis and dermis in mycosis fungoides and adult T-cell leukaemia/lymphoma. Int J Oncol 45(3):1200–1208. https://doi.org/10.3892/ijo.2014.2524
doi: 10.3892/ijo.2014.2524 pubmed: 24970722
Naito T, Yasunaga JI, Mitobe Y, Shirai K, Sejima H, Ushirogawa H et al (2018) Distinct gene expression signatures induced by viral transactivators of different HTLV-1 subgroups that confer a different risk of HAM/TSP. Retrovirology 15(1):72. https://doi.org/10.1186/s12977-018-0454-x
doi: 10.1186/s12977-018-0454-x pubmed: 30400920 pmcid: 6219256
Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181(12):8391–8401
doi: 10.4049/jimmunol.181.12.8391 pubmed: 19050256
Heo YJ, Choi S-E, Lee N, Jeon JY, Han SJ, Kim DJ et al (2020) CCL20 induced by visfatin in macrophages via the NF-κB and MKK3/6-p38 signalling pathways contributes to hepatic stellate cell activation. Mol Biol Rep 47(6):4285–4293. https://doi.org/10.1007/s11033-020-05510-7
doi: 10.1007/s11033-020-05510-7 pubmed: 32418112 pmcid: 7295719
Frick VO, Rubie C, Keilholz U, Ghadjar P (2016) Chemokine/chemokine receptor pair CCL20/CCR6 in human colorectal malignancy: an overview. World J Gastroenterol 22(2):833–841. https://doi.org/10.3748/wjg.v22.i2.833
doi: 10.3748/wjg.v22.i2.833 pubmed: 26811629 pmcid: 4716081
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I (2020) CC chemokines in a tumour: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci 21(20):7619
doi: 10.3390/ijms21207619 pubmed: 33076281 pmcid: 7590012
Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106. https://doi.org/10.1038/nature07623
doi: 10.1038/nature07623 pubmed: 19122641 pmcid: 2746432
Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related Inflamm Nat 454(7203):436–444
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T et al (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992
doi: 10.1038/s41423-022-00905-x pubmed: 35970871 pmcid: 9376585
Shi J, Gao W, Shao F, Pyroptosis (2017) Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004
doi: 10.1016/j.tibs.2016.10.004 pubmed: 27932073
Hu Y, Wang B, Li S, Yang S (2022) Pyroptosis, and its role in central nervous system disease. J Mol Biol 434(4):167379
doi: 10.1016/j.jmb.2021.167379 pubmed: 34838808
Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K et al (2022) Cell pyroptosis in health and inflammatory diseases. Cell death discovery 8(1):191
doi: 10.1038/s41420-022-00998-3 pubmed: 35411030 pmcid: 8995683
Derakhshan R, Mirhosseini A, Ahmadi Ghezeldasht S, Jahantigh HR, Mohareri M, Boostani R et al (2020) Abnormal vitamin D and lipid profile in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Mol Biol Rep 47(1):631–637. https://doi.org/10.1007/s11033-019-05171-1
doi: 10.1007/s11033-019-05171-1 pubmed: 31713009
Ma G, Yasunaga J, Matsuoka M (2016) Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 13:16. https://doi.org/10.1186/s12977-016-0249-x
doi: 10.1186/s12977-016-0249-x pubmed: 26979059 pmcid: 4793531
Akbarin MM, Shirdel A, Bari A, Mohaddes ST, Rafatpanah H, Karimani EG et al (2017) Evaluation of the role of TAX, HBZ, and HTLV-1 proviral load on the survival of ATLL patients. Blood Res 52(2):106. https://doi.org/10.5045/br.2017.52.2.106
doi: 10.5045/br.2017.52.2.106 pubmed: 28698846 pmcid: 5503887
Satou Y, Matsuoka M (2012) Molecular and Cellular Mechanisms of Leukemogenesis of ATL: Emergent evidence of a significant role for HBZ in HTLV-1-Induced Pathogenesis. Leuk Res Treatment 2012:213653. https://doi.org/10.1155/2012/213653
doi: 10.1155/2012/213653 pubmed: 23198153
Yamada K, Miyoshi H, Yoshida N, Shimono J, Sato K, Nakashima K et al (2021) Human T-cell lymphotropic virus HBZ and tax mRNA expression are associated with specific clinicopathological features in adult T-cell leukaemia/lymphoma. Mod Pathol 34(2):314–326. https://doi.org/10.1038/s41379-020-00654-0
doi: 10.1038/s41379-020-00654-0 pubmed: 32973330
Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M et al (2021) The HTLV-1 viral oncoproteins tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 17(9):e1009919. https://doi.org/10.1371/journal.ppat.1009919
doi: 10.1371/journal.ppat.1009919 pubmed: 34543356 pmcid: 8483338
Kobayashi N, Konishi H, Sabe H, Shigesada K, Noma T, Honjo T et al (1984) Genomic structure of HTLV (human T-cell leukaemia virus): detection of the defective genome and its amplification in MT-2 cells. Embo j 3(6):1339–1343. https://doi.org/10.1002/j.1460-2075.1984.tb01974.x
doi: 10.1002/j.1460-2075.1984.tb01974.x pubmed: 6086318 pmcid: 557520
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S et al (2018) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation–a target for novel cancer therapy. Cancer Treat Rev 63:40–47
doi: 10.1016/j.ctrv.2017.11.007 pubmed: 29207310
Lane BR, King SR, Bock PJ, Strieter RM, Coffey MJ, Markovitz DM (2003) The CXC chemokine IP-10 stimulates HIV-1 replication. Virology 307(1):122–134
doi: 10.1016/S0042-6822(02)00045-4 pubmed: 12667820
Zeremski M, Dimova R, Brown Q, Jacobson IM, Markatou M, Talal AH (2009) Peripheral CXCR3-associated chemokines as biomarkers of fibrosis in chronic hepatitis C virus infection. J Infect Dis 200(11):1774–1780
doi: 10.1086/646614 pubmed: 19848607
Kawada K, Hosogi H, Sonoshita M, Sakashita H, Manabe T, Shimahara Y et al (2007) Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26(32):4679–4688
doi: 10.1038/sj.onc.1210267 pubmed: 17297455
Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. https://doi.org/10.1038/nrmicro2070
doi: 10.1038/nrmicro2070 pubmed: 19148178 pmcid: 2910423
Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514. https://doi.org/10.1038/nature12940
doi: 10.1038/nature12940 pubmed: 24356306 pmcid: 4047036
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y et al (2020) Pyroptosis: a new frontier in cancer. Biomed Pharmacother 121:109595
doi: 10.1016/j.biopha.2019.109595 pubmed: 31710896
van Montfoort N, Olagnier D, Hiscott J (2014) Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 25(6):657–668. https://doi.org/10.1016/j.cytogfr.2014.08.006
doi: 10.1016/j.cytogfr.2014.08.006 pubmed: 25240798
Chu Q, Jiang Y, Zhang W, Xu C, Du W, Tuguzbaeva G et al (2016) Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget 7(51):84658–84665. https://doi.org/10.18632/oncotarget.12384
doi: 10.18632/oncotarget.12384 pubmed: 27705930 pmcid: 5356689
Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X et al (2014) Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest 94(1):52–62. https://doi.org/10.1038/labinvest.2013.126
doi: 10.1038/labinvest.2013.126 pubmed: 24166187
Sun Y, Guo Y (2018) Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion. Oncol Lett 15(5):6431–6435. https://doi.org/10.3892/ol.2018.8176
doi: 10.3892/ol.2018.8176 pubmed: 29725399 pmcid: 5920210
Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107(50):21635–21640. https://doi.org/10.1073/pnas.1016814108
doi: 10.1073/pnas.1016814108 pubmed: 21118981 pmcid: 3003083

Auteurs

Masooma Rahimzada (M)

Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.

Mehri Nahavandi (M)

Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.

Mona Saffari (M)

Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.

Azam Shafaei (A)

Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.

Arman Mosavat (A)

Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.

Sanaz Ahmadi Gezeldasht (S)

Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.

Nazila Ariaee (N)

Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.

Narges Valizadeh (N)

Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.

Hossein Rahimi (H)

Hematology and Oncology Division, Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Seyed Abdolrahim Rezaee (SA)

Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran. RezaeeR@mums.ac.ir.

Mohammad Derakhshan (M)

Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. DerakhshanM@mums.ac.ir.
Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran. DerakhshanM@mums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH