A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal.
Cardiac growth and remodeling
Computational modeling
Homogenized constrained mixture model
Hypertension
Mechanobiology
Journal
Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
20
01
2023
accepted:
06
07
2023
medline:
30
10
2023
pubmed:
24
7
2023
entrez:
23
7
2023
Statut:
ppublish
Résumé
Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.
Identifiants
pubmed: 37482576
doi: 10.1007/s10237-023-01747-w
pii: 10.1007/s10237-023-01747-w
pmc: PMC10613155
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1983-2002Subventions
Organisme : NHLBI NIH HHS
ID : K99 HL161313
Pays : United States
Organisme : NHLBI NIH HHS
ID : K99HL161313
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Cardiovasc Res. 1988 Oct;22(10):686-95
pubmed: 2978464
Cell. 2015 Jun 18;161(7):1566-75
pubmed: 26073943
Biomech Model Mechanobiol. 2016 Dec;15(6):1389-1403
pubmed: 27008346
Int J Eng Sci. 2014 Dec 1;85:203-223
pubmed: 25308990
J Hum Hypertens. 2012 Jun;26(6):343-9
pubmed: 22113443
J Am Coll Cardiol. 2000 Mar 1;35(3):569-82
pubmed: 10716457
Acta Biomater. 2015 Sep;24:172-92
pubmed: 26141152
Sci Rep. 2016 Feb 10;6:20674
pubmed: 26861590
J R Soc Interface. 2022 Nov;19(196):20220534
pubmed: 36415977
Biomech Model Mechanobiol. 2019 Apr;18(2):503-529
pubmed: 30535650
Prog Biophys Mol Biol. 2021 Jan;159:75-85
pubmed: 32702352
Nat Commun. 2019 Jan 10;10(1):117
pubmed: 30631059
Int J Numer Method Biomed Eng. 2014 Sep;30(9):857-72
pubmed: 24596311
Circulation. 2010 Dec 21;122(25):2727-35
pubmed: 21173361
Acta Biomater. 2021 Oct 15;134:348-356
pubmed: 34332102
Biomech Model Mechanobiol. 2021 Feb;20(1):293-307
pubmed: 32970240
Front Physiol. 2021 Aug 09;12:694940
pubmed: 34434115
Z Angew Math Mech. 2018 Dec;98(12):2048-2071
pubmed: 30618468
Biomech Model Mechanobiol. 2019 Apr;18(2):327-345
pubmed: 30413985
Biomech Model Mechanobiol. 2019 Dec;18(6):1895-1913
pubmed: 31201620
Science. 2009 Apr 3;324(5923):98-102
pubmed: 19342590
Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):211-26
pubmed: 26952285
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75
pubmed: 19657007
Am J Cardiol. 1960 Mar;5:370-82
pubmed: 14417346
J R Soc Interface. 2012 Sep 7;9(74):2047-58
pubmed: 22491975
J Elast. 2017 Dec;129(1-2):257-281
pubmed: 29632418
Circ Res. 1984 Mar;54(3):294-300
pubmed: 6230171
Cardiovasc Res. 2021 May 25;117(6):1450-1488
pubmed: 33135058
Biomech Model Mechanobiol. 2017 Oct;16(5):1765-1777
pubmed: 28536892
J Theor Biol. 2010 Aug 7;265(3):433-42
pubmed: 20447409
Biomech Model Mechanobiol. 2015 Apr;14(2):217-29
pubmed: 24888270
F1000Res. 2013 Oct 08;2:208
pubmed: 24555102
JAMA. 2003 May 21;289(19):2560-72
pubmed: 12748199
Eur J Cardiothorac Surg. 2006 Oct;30(4):604-10
pubmed: 16935520
Oxid Med Cell Longev. 2017;2017:3920195
pubmed: 28751931
J Clin Invest. 1975 Jul;56(1):56-64
pubmed: 124746
Biomech Model Mechanobiol. 2009 Aug;8(4):301-9
pubmed: 18758835
Meccanica. 2017 Feb;52(3):645-664
pubmed: 28286348
J R Soc Interface. 2014 Nov 6;11(100):20140680
pubmed: 25209402
Acta Biomater. 2020 Apr 1;106:34-53
pubmed: 32058078
J Cardiovasc Magn Reson. 2021 Sep 20;23(1):103
pubmed: 34538266
J Biomech. 1994 Apr;27(4):455-67
pubmed: 8188726
J Am Coll Cardiol. 1989 Jun;13(7):1637-52
pubmed: 2656824
Lancet. 2006 Jan 28;367(9507):356-67
pubmed: 16443044
Biophys Rev. 2021 Aug 25;13(5):729-746
pubmed: 34777616
J Cell Physiol. 1998 Jun;175(3):323-32
pubmed: 9572477
Curr Opin Biomed Eng. 2019 Sep;11:35-44
pubmed: 31886450
Med Image Anal. 2017 Jul;39:56-77
pubmed: 28433947
Biomech Model Mechanobiol. 2017 Jun;16(3):889-906
pubmed: 27921189
Cardiovasc Res. 2009 Feb 15;81(3):439-48
pubmed: 18974044
Physiol Rev. 2007 Oct;87(4):1285-342
pubmed: 17928585
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H189-H205
pubmed: 29631368
Cardiovasc Res. 1990 Aug;24(8):641-6
pubmed: 2146017
Int J Numer Method Biomed Eng. 2020 Apr;36(4):e3320
pubmed: 32022424
Invest Ophthalmol Vis Sci. 2010 Aug;51(8):3853-63
pubmed: 20220050
Biomech Model Mechanobiol. 2021 Jun;20(3):833-850
pubmed: 33683513
J Elast. 2021 Aug;145(1-2):49-75
pubmed: 34483462
J Mech Phys Solids. 2019 Apr;125:298-325
pubmed: 31543547
Nat Rev Cardiol. 2018 Feb;15(2):83-96
pubmed: 28933783
Life Sci. 2008 Jan 30;82(5-6):265-72
pubmed: 18155733
Transl Res. 2019 Jul;209:138-155
pubmed: 30986384