A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal.

Cardiac growth and remodeling Computational modeling Homogenized constrained mixture model Hypertension Mechanobiology

Journal

Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 20 01 2023
accepted: 06 07 2023
medline: 30 10 2023
pubmed: 24 7 2023
entrez: 23 7 2023
Statut: ppublish

Résumé

Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.

Identifiants

pubmed: 37482576
doi: 10.1007/s10237-023-01747-w
pii: 10.1007/s10237-023-01747-w
pmc: PMC10613155
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1983-2002

Subventions

Organisme : NHLBI NIH HHS
ID : K99 HL161313
Pays : United States
Organisme : NHLBI NIH HHS
ID : K99HL161313
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Cardiovasc Res. 1988 Oct;22(10):686-95
pubmed: 2978464
Cell. 2015 Jun 18;161(7):1566-75
pubmed: 26073943
Biomech Model Mechanobiol. 2016 Dec;15(6):1389-1403
pubmed: 27008346
Int J Eng Sci. 2014 Dec 1;85:203-223
pubmed: 25308990
J Hum Hypertens. 2012 Jun;26(6):343-9
pubmed: 22113443
J Am Coll Cardiol. 2000 Mar 1;35(3):569-82
pubmed: 10716457
Acta Biomater. 2015 Sep;24:172-92
pubmed: 26141152
Sci Rep. 2016 Feb 10;6:20674
pubmed: 26861590
J R Soc Interface. 2022 Nov;19(196):20220534
pubmed: 36415977
Biomech Model Mechanobiol. 2019 Apr;18(2):503-529
pubmed: 30535650
Prog Biophys Mol Biol. 2021 Jan;159:75-85
pubmed: 32702352
Nat Commun. 2019 Jan 10;10(1):117
pubmed: 30631059
Int J Numer Method Biomed Eng. 2014 Sep;30(9):857-72
pubmed: 24596311
Circulation. 2010 Dec 21;122(25):2727-35
pubmed: 21173361
Acta Biomater. 2021 Oct 15;134:348-356
pubmed: 34332102
Biomech Model Mechanobiol. 2021 Feb;20(1):293-307
pubmed: 32970240
Front Physiol. 2021 Aug 09;12:694940
pubmed: 34434115
Z Angew Math Mech. 2018 Dec;98(12):2048-2071
pubmed: 30618468
Biomech Model Mechanobiol. 2019 Apr;18(2):327-345
pubmed: 30413985
Biomech Model Mechanobiol. 2019 Dec;18(6):1895-1913
pubmed: 31201620
Science. 2009 Apr 3;324(5923):98-102
pubmed: 19342590
Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):211-26
pubmed: 26952285
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75
pubmed: 19657007
Am J Cardiol. 1960 Mar;5:370-82
pubmed: 14417346
J R Soc Interface. 2012 Sep 7;9(74):2047-58
pubmed: 22491975
J Elast. 2017 Dec;129(1-2):257-281
pubmed: 29632418
Circ Res. 1984 Mar;54(3):294-300
pubmed: 6230171
Cardiovasc Res. 2021 May 25;117(6):1450-1488
pubmed: 33135058
Biomech Model Mechanobiol. 2017 Oct;16(5):1765-1777
pubmed: 28536892
J Theor Biol. 2010 Aug 7;265(3):433-42
pubmed: 20447409
Biomech Model Mechanobiol. 2015 Apr;14(2):217-29
pubmed: 24888270
F1000Res. 2013 Oct 08;2:208
pubmed: 24555102
JAMA. 2003 May 21;289(19):2560-72
pubmed: 12748199
Eur J Cardiothorac Surg. 2006 Oct;30(4):604-10
pubmed: 16935520
Oxid Med Cell Longev. 2017;2017:3920195
pubmed: 28751931
J Clin Invest. 1975 Jul;56(1):56-64
pubmed: 124746
Biomech Model Mechanobiol. 2009 Aug;8(4):301-9
pubmed: 18758835
Meccanica. 2017 Feb;52(3):645-664
pubmed: 28286348
J R Soc Interface. 2014 Nov 6;11(100):20140680
pubmed: 25209402
Acta Biomater. 2020 Apr 1;106:34-53
pubmed: 32058078
J Cardiovasc Magn Reson. 2021 Sep 20;23(1):103
pubmed: 34538266
J Biomech. 1994 Apr;27(4):455-67
pubmed: 8188726
J Am Coll Cardiol. 1989 Jun;13(7):1637-52
pubmed: 2656824
Lancet. 2006 Jan 28;367(9507):356-67
pubmed: 16443044
Biophys Rev. 2021 Aug 25;13(5):729-746
pubmed: 34777616
J Cell Physiol. 1998 Jun;175(3):323-32
pubmed: 9572477
Curr Opin Biomed Eng. 2019 Sep;11:35-44
pubmed: 31886450
Med Image Anal. 2017 Jul;39:56-77
pubmed: 28433947
Biomech Model Mechanobiol. 2017 Jun;16(3):889-906
pubmed: 27921189
Cardiovasc Res. 2009 Feb 15;81(3):439-48
pubmed: 18974044
Physiol Rev. 2007 Oct;87(4):1285-342
pubmed: 17928585
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H189-H205
pubmed: 29631368
Cardiovasc Res. 1990 Aug;24(8):641-6
pubmed: 2146017
Int J Numer Method Biomed Eng. 2020 Apr;36(4):e3320
pubmed: 32022424
Invest Ophthalmol Vis Sci. 2010 Aug;51(8):3853-63
pubmed: 20220050
Biomech Model Mechanobiol. 2021 Jun;20(3):833-850
pubmed: 33683513
J Elast. 2021 Aug;145(1-2):49-75
pubmed: 34483462
J Mech Phys Solids. 2019 Apr;125:298-325
pubmed: 31543547
Nat Rev Cardiol. 2018 Feb;15(2):83-96
pubmed: 28933783
Life Sci. 2008 Jan 30;82(5-6):265-72
pubmed: 18155733
Transl Res. 2019 Jul;209:138-155
pubmed: 30986384

Auteurs

Amadeus M Gebauer (AM)

Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany. amadeus.gebauer@tum.de.

Martin R Pfaller (MR)

Pediatric Cardiology, Stanford Maternal & Child Health Research Institute, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA.

Fabian A Braeu (FA)

Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Christian J Cyron (CJ)

Institute of Continuum and Material Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany.
Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany.

Wolfgang A Wall (WA)

Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH