Fluctuations of formin binding in the generation of membrane patterns.
PTEN
Ras
actin waves
formin
phosphatidylinositides
Journal
Biophysical journal
ISSN: 1542-0086
Titre abrégé: Biophys J
Pays: United States
ID NLM: 0370626
Informations de publication
Date de publication:
22 08 2023
22 08 2023
Historique:
received:
23
05
2023
revised:
13
07
2023
accepted:
20
07
2023
pmc-release:
22
08
2024
medline:
25
8
2023
pubmed:
25
7
2023
entrez:
25
7
2023
Statut:
ppublish
Résumé
Circular actin waves that propagate on the substrate-attached membrane of Dictyostelium cells separate two distinct membrane domains from each other: an inner territory rich in phosphatidyl-(3,4,5) trisphosphate (PIP3) and an external area decorated with the PIP3-degrading 3-phosphatase PTEN. During wave propagation, the inner territory increases at the expense of the external area. Beyond a size limit, the inner territory becomes unstable, breaking into an inner and an external domain. The sharp boundary between these domains is demarcated by the insertion of an actin wave. During the conversion of inner territory to external area, the state of the membrane fluctuates, as visualized by dynamic landscapes of formin B binding. Here we analyze the formin B fluctuations in relation to three markers of the membrane state: activated Ras, PIP3, and PTEN.
Identifiants
pubmed: 37488927
pii: S0006-3495(23)00465-4
doi: 10.1016/j.bpj.2023.07.014
pmc: PMC10465725
pii:
doi:
Substances chimiques
Actins
0
Formins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3386-3394Informations de copyright
Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing or financial interests.
Références
Dev Cell. 2017 Nov 20;43(4):493-506.e3
pubmed: 29161593
Structure. 2019 Aug 6;27(8):1211-1223.e5
pubmed: 31230946
Eur J Biochem. 1972 Jun 23;28(1):136-42
pubmed: 4340476
FEBS Lett. 2004 Nov 5;577(1-2):227-32
pubmed: 15527790
Small GTPases. 2019 Jan;10(1):72-80
pubmed: 28136018
FEBS Lett. 2006 Dec 11;580(28-29):6707-13
pubmed: 17126332
Mol Biol Cell. 2020 Mar 1;31(5):373-385
pubmed: 31940262
J Cell Biol. 1994 Sep;126(6):1537-45
pubmed: 8089184
BMC Genomics. 2005 Mar 01;6:28
pubmed: 15740615
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Cell Biol. 2015 Nov;17(11):1471-83
pubmed: 26479320
Yale J Biol Med. 2019 Sep 20;92(3):397-411
pubmed: 31543704
Cell. 2002 May 31;109(5):611-23
pubmed: 12062104
BMC Cell Biol. 2011 Oct 07;12:42
pubmed: 21982379
Methods Mol Biol. 2016;1407:79-96
pubmed: 27271895
Biophys J. 2012 Sep 19;103(6):1170-8
pubmed: 22995489
Cell. 1998 Oct 2;95(1):81-91
pubmed: 9778249
EMBO Rep. 2004 Jun;5(6):602-6
pubmed: 15143344
Biophys J. 2004 Nov;87(5):3493-503
pubmed: 15347592
J Cell Sci. 2013 May 1;126(Pt 9):2069-78
pubmed: 23447671
Methods Mol Biol. 2013;983:93-112
pubmed: 23494303
Cell Motil Cytoskeleton. 2002 Aug;52(4):221-30
pubmed: 12112136
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220825120
pubmed: 36897976
J Cell Sci. 2014 Oct 15;127(Pt 20):4507-17
pubmed: 25107368