Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex.
anterior auditory field
corticofugal
mouse
neocortex
primary auditory cortex
secondary auditory cortex
two-photon imaging
Journal
Frontiers in neural circuits
ISSN: 1662-5110
Titre abrégé: Front Neural Circuits
Pays: Switzerland
ID NLM: 101477940
Informations de publication
Date de publication:
2023
2023
Historique:
received:
21
04
2023
accepted:
22
06
2023
medline:
1
8
2023
pubmed:
31
7
2023
entrez:
31
7
2023
Statut:
epublish
Résumé
The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.
Identifiants
pubmed: 37521334
doi: 10.3389/fncir.2023.1210057
pmc: PMC10372447
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1210057Informations de copyright
Copyright © 2023 Schmitt, Andrea, Wadle and Hirtz.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Neuron. 2017 Jan 4;93(1):33-47
pubmed: 27989459
iScience. 2023 Apr 08;26(5):106625
pubmed: 37250327
Neuron. 2014 Apr 16;82(2):486-99
pubmed: 24742467
J Comp Neurol. 1996 Jul 15;371(1):15-40
pubmed: 8835717
Front Syst Neurosci. 2015 Sep 30;9:134
pubmed: 26483647
Trends Neurosci. 2014 Sep;37(9):502-10
pubmed: 25002236
Science. 2020 Nov 13;370(6518):844-848
pubmed: 33184213
Nat Neurosci. 2010 Mar;13(3):353-60
pubmed: 20118927
Hear Res. 2014 Aug;314:51-9
pubmed: 24911237
Eur J Neurosci. 2002 Jul;16(1):119-28
pubmed: 12153536
J Neurosci. 2021 Apr 7;41(14):3142-3162
pubmed: 33593857
J Neurosci. 2015 Apr 29;35(17):6703-13
pubmed: 25926449
J Neurophysiol. 2019 Dec 1;122(6):2344-2353
pubmed: 31596630
Sci Rep. 2020 Jul 2;10(1):10905
pubmed: 32616766
Curr Biol. 2020 May 4;30(9):1649-1663.e5
pubmed: 32220317
Cerebellum. 2015 Oct;14(5):584-96
pubmed: 26142291
Nat Commun. 2015 Jun 11;6:7224
pubmed: 26068082
J Neurophysiol. 2015 Nov;114(5):2726-40
pubmed: 26311178
Curr Opin Neurobiol. 2019 Apr;55:22-31
pubmed: 30530255
Elife. 2020 Jan 31;9:
pubmed: 32003747
J Neurosci. 2011 Feb 23;31(8):2983-95
pubmed: 21414920
Elife. 2021 Dec 15;10:
pubmed: 34910627
J Neurophysiol. 2015 Apr 1;113(7):2900-20
pubmed: 25695649
Exp Brain Res. 2003 Dec;153(4):461-6
pubmed: 13680047
Sci Rep. 2023 May 11;13(1):7658
pubmed: 37169827
Nat Neurosci. 2020 Oct;23(10):1277-1285
pubmed: 32747790
Neuron. 2016 Oct 19;92(2):372-382
pubmed: 27720486
Nat Neurosci. 2023 Mar;26(3):481-494
pubmed: 36690901
J Neurosci. 2012 Jul 4;32(27):9159-72
pubmed: 22764225
Elife. 2022 Mar 15;11:
pubmed: 35290181
Neuron. 2022 Jun 15;110(12):2024-2040.e10
pubmed: 35452606
PLoS Comput Biol. 2017 Mar 14;13(3):e1005423
pubmed: 28291787
Cereb Cortex. 2020 Mar 14;30(3):1603-1622
pubmed: 31667491
J Neurosci. 2019 Jan 9;39(2):256-270
pubmed: 30361396
Nat Neurosci. 2009 Jun;12(6):711-7
pubmed: 19471270
J Neurophysiol. 2007 Dec;98(6):3330-40
pubmed: 17898147
Sci Rep. 2016 Feb 29;6:22315
pubmed: 26924462
J Neurosci. 2020 Jun 3;40(23):4469-4482
pubmed: 32327533
Elife. 2019 Feb 08;8:
pubmed: 30735128
Nat Neurosci. 2010 Mar;13(3):361-8
pubmed: 20118924
J Neurophysiol. 2008 May;99(5):2347-56
pubmed: 18385487
Neuron. 2022 Nov 16;110(22):3760-3773.e5
pubmed: 36087582
J Comp Neurol. 2005 May 30;486(2):101-16
pubmed: 15844210
J Neurophysiol. 2007 Feb;97(2):1413-27
pubmed: 17151230
J Neurophysiol. 2005 Jan;93(1):71-83
pubmed: 15331615
Front Neural Circuits. 2020 Oct 26;14:591986
pubmed: 33192337
J Neurophysiol. 2005 Nov;94(5):3357-67
pubmed: 16000529
Bioinformatics. 2008 Mar 1;24(5):719-20
pubmed: 18024473
Neuroscience. 2015 Aug 6;300:325-37
pubmed: 26002315
Neuron. 2012 Oct 18;76(2):435-49
pubmed: 23083744
J Neurosci. 2021 Dec 1;41(48):9906-9918
pubmed: 34670851
Nat Commun. 2021 Jul 29;12(1):4610
pubmed: 34326331
Elife. 2020 May 18;9:
pubmed: 32420865
Nat Neurosci. 2010 Feb;13(2):253-60
pubmed: 20037578
J Neurosci Methods. 2017 Nov 1;291:83-94
pubmed: 28782629
Neuron. 2015 Dec 16;88(6):1253-1267
pubmed: 26671462
J Neurosci. 2013 Mar 20;33(12):5326-39
pubmed: 23516297
Neuron. 2014 Aug 20;83(4):944-59
pubmed: 25088366
J Neurosci. 2015 Aug 05;35(31):10927-39
pubmed: 26245957
Front Syst Neurosci. 2015 Mar 09;9:19
pubmed: 25805974
Cell Rep. 2019 Apr 30;27(5):1319-1326.e5
pubmed: 31042460
Nat Neurosci. 2023 Mar;26(3):495-505
pubmed: 36690900
Nat Methods. 2019 Jul;16(7):649-657
pubmed: 31209382