Flap perfusion monitoring with an attached surface probe in microvascular reconstruction of the oral cavity.

Attached surface probe Flap perfusion monitoring Free flap Microvascular head and neck reconstruction Oxygen-2-see analysis system

Journal

Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 18 05 2023
accepted: 17 07 2023
medline: 11 9 2023
pubmed: 31 7 2023
entrez: 31 7 2023
Statut: ppublish

Résumé

Postoperative flap monitoring is essential in oral microvascular reconstruction for timely detection of vascular compromise. This study investigated the use of attached surface probes for the oxygen-2-see (O2C) analysis system (LEA Medizintechnik, Germany) for intraoral flap perfusion monitoring. The study included 30 patients who underwent oral reconstruction with a microvascular radial-free forearm flap (RFFF) or anterolateral thigh flap (ALTF) between 2020 and 2022. Flap perfusion was measured with attached (3-mm measurement depth) and unattached surface probes (2- and 8-mm measurement depths) for the O2C analysis system at 0, 12, 24, 36, and 48 h postoperatively. Flap perfusion monitoring with attached surface probes was evaluated for cut-off values for flap blood flow, hemoglobin concentration, and hemoglobin oxygen saturation indicative of vascular compromise and for accuracy and concordance with unattached surface probes. Three RFFFs were successfully revised, and one ALTF was unsuccessfully revised. The cut-off values indicative of vascular compromise for flap perfusion monitoring with attached surface probes were for RFFF and ALTF: blood flow < 60 arbitrary units (AU) and < 40AU, hemoglobin concentration > 100AU and > 80AU (both > 10% increase), and hemoglobin oxygen saturation < 40% and < 30%. Flap perfusion monitoring with attached surface probes yielded a 97.1% accuracy and a Cohen's kappa of 0.653 (p < 0.001). Flap perfusion monitoring with attached surface probes for the O2C analysis system detected vascular compromise accurately and concordantly with unattached surface probes. Attached surface probes for the O2C analysis system are a feasible option for intraoral flap perfusion monitoring.

Identifiants

pubmed: 37522990
doi: 10.1007/s00784-023-05177-x
pii: 10.1007/s00784-023-05177-x
pmc: PMC10492739
doi:

Substances chimiques

Hemoglobins 0

Types de publication

Journal Article

Langues

eng

Pagination

5577-5585

Informations de copyright

© 2023. The Author(s).

Références

Wong C-H, Wei F-C (2010) Microsurgical free flap in head and neck reconstruction. Head Neck 32:1236–1245. https://doi.org/10.1002/hed.21284
doi: 10.1002/hed.21284 pubmed: 20014446
Wang K-Y, Lin Y-S, Chen L-W et al (2020) Risk of free flap failure in head and neck reconstruction: analysis of 21,548 cases from a nationwide database. Ann Plast Surg 84:S3–S6. https://doi.org/10.1097/SAP.0000000000002180
doi: 10.1097/SAP.0000000000002180 pubmed: 31833882
Chang CS, Chu MW, Nelson JA et al (2017) Complications and cost analysis of intraoperative arterial complications in head and neck free flap reconstruction. J Reconstr Microsurg 33:318–327. https://doi.org/10.1055/s-0037-1598618
doi: 10.1055/s-0037-1598618 pubmed: 28236793
Abouyared M, Katz AP, Ein L et al (2019) Controversies in free tissue transfer for head and neck cancer: a review of the literature. Head Neck 41:3457–3463. https://doi.org/10.1002/hed.25853
doi: 10.1002/hed.25853 pubmed: 31286627
Carroll WR, Esclamado RM (2000) Ischemia/reperfusion injury in microvascular surgery. Head Neck 22:700–713. https://doi.org/10.1002/1097-0347(200010)22:7%3c700:aid-hed10%3e3.0.co;2-h
doi: 10.1002/1097-0347(200010)22:7<700:aid-hed10>3.0.co;2-h pubmed: 11002326
Siemionow M, Arslan E (2004) Ischemia/reperfusion injury: a review in relation to free tissue transfers. Microsurgery 24:468–475. https://doi.org/10.1002/micr.20060
doi: 10.1002/micr.20060 pubmed: 15378577
Hölzle F, Loeffelbein DJ, Nolte D et al (2006) Free flap monitoring using simultaneous non-invasive laser Doppler flowmetry and tissue spectrophotometry. J Craniomaxillofac Surg 34:25–33. https://doi.org/10.1016/j.jcms.2005.07.010
doi: 10.1016/j.jcms.2005.07.010 pubmed: 16343915
Abdel-Galil K, Mitchell D (2009) Postoperative monitoring of microsurgical free tissue transfers for head and neck reconstruction: a systematic review of current techniques—part I. Non-invasive techniques. Br J Oral Maxillofac Surg 47:351–355. https://doi.org/10.1016/j.bjoms.2008.11.013
doi: 10.1016/j.bjoms.2008.11.013 pubmed: 19144453
Hölzle F, Rau A, Loeffelbein DJ et al (2010) Results of monitoring fasciocutaneous, myocutaneous, osteocutaneous and perforator flaps: 4-year experience with 166 cases. Int J Oral Maxillofac Surg 39:21–28. https://doi.org/10.1016/j.ijom.2009.10.012
doi: 10.1016/j.ijom.2009.10.012 pubmed: 19944567
Sweeny L, Curry J, Crawley M et al (2020) Factors impacting successful salvage of the failing free flap. Head Neck 42:3568–3579. https://doi.org/10.1002/hed.26427
doi: 10.1002/hed.26427 pubmed: 32844522
Shen AY, Lonie S, Lim K et al (2021) Free flap monitoring, salvage, and failure timing: a systematic review. J Reconstr Microsurg 37:300–308. https://doi.org/10.1055/s-0040-1722182
doi: 10.1055/s-0040-1722182 pubmed: 33395711
Lohman RF, Langevin C-J, Bozkurt M et al (2013) A prospective analysis of free flap monitoring techniques: physical examination, external Doppler, implantable Doppler, and tissue oximetry. J Reconstr Microsurg 29:51–56. https://doi.org/10.1055/s-0032-1326741
doi: 10.1055/s-0032-1326741 pubmed: 23147246
Kwasnicki R, Noakes A, Banhidy N et al (2021) Quantifying the limitations of clinical and technology-based flap monitoring strategies using a systematic recurrent themes analysis. Br J Surg 108:S6. https://doi.org/10.1093/bjs/znab259.699
doi: 10.1093/bjs/znab259.699
Tenland T, Salerud EG, Nilsson GE et al (1983) Spatial and temporal variations in human skin blood flow. Int J Microcirc Clin Exp 2:81–90
pubmed: 6236158
Abel G, Allen J, Drinnan M (2014) A pilot study of a new spectrophotometry device to measure tissue oxygen saturation. Physiol Meas 35:1769–1780. https://doi.org/10.1088/0967-3334/35/9/1769
doi: 10.1088/0967-3334/35/9/1769 pubmed: 25119876
Zhang XU, Faber DJ, van Leeuwen TG et al (2020) Effect of probe pressure on skin tissue optical properties measurement using multi-diameter single fiber reflectance spectroscopy. J Phys Photonics 2:34008. https://doi.org/10.1088/2515-7647/ab9071
doi: 10.1088/2515-7647/ab9071
Beckert S, Witte MB, Königsrainer A et al (2004) The impact of the Micro-Lightguide O2C for the quantification of tissue ischemia in diabetic foot ulcers. Diabetes Care 27:2863–2867. https://doi.org/10.2337/diacare.27.12.2863
doi: 10.2337/diacare.27.12.2863 pubmed: 15562198
McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22:276–282
doi: 10.11613/BM.2012.031
Bolboacă SD (2019) Medical diagnostic tests: a review of test anatomy, phases, and statistical treatment of data. Comput Math Methods Med 2019:1891569. https://doi.org/10.1155/2019/1891569
doi: 10.1155/2019/1891569 pubmed: 31275427 pmcid: 6558629
Kamolz L-P, Giovanoli P, Haslik W et al (2002) Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. J Reconstr Microsurg 18:487–491; discussion 492–493. https://doi.org/10.1055/s-2002-33319
Rahmanian-Schwarz A, Rothenberger J, Amr A et al (2012) A postoperative analysis of perfusion dynamics in deep inferior epigastric perforator flap breast reconstruction: a noninvasive quantitative measurement of flap oxygen saturation and blood flow. Ann Plast Surg 69:535–539. https://doi.org/10.1097/SAP.0b013e31821bd484
doi: 10.1097/SAP.0b013e31821bd484 pubmed: 21629069
Cammarota T, Pinto F, Magliaro A et al (1998) Current uses of diagnostic high-frequency US in dermatology. Eur J Radiol 27(Suppl 2):S215-223. https://doi.org/10.1016/S0720-048X(98)00065-5
doi: 10.1016/S0720-048X(98)00065-5 pubmed: 9652525
Deegan AJ, Wang RK (2019) Microvascular imaging of the skin. Phys Med Biol 64:07TR01. https://doi.org/10.1088/1361-6560/ab03f1
doi: 10.1088/1361-6560/ab03f1 pubmed: 30708364 pmcid: 7787005
Sirs JA (1991) The flow of human blood through capillary tubes. J Physiol 442:569–583. https://doi.org/10.1113/jphysiol.1991.sp018809
doi: 10.1113/jphysiol.1991.sp018809 pubmed: 1798043 pmcid: 1179905
Hohlweg-Majert B, Ristow O, Gust K et al (2012) Impact of radiotherapy on microsurgical reconstruction of the head and neck. J Cancer Res Clin Oncol 138:1799–1811. https://doi.org/10.1007/s00432-012-1263-6
doi: 10.1007/s00432-012-1263-6 pubmed: 22714589
Wu C, Rwei AY, Lee JY et al (2022) A wireless near-infrared spectroscopy device for flap monitoring: proof of concept in a porcine musculocutaneous flap model. J Reconstr Microsurg 38:96–105. https://doi.org/10.1055/s-0041-1732426
doi: 10.1055/s-0041-1732426 pubmed: 34404105
Chen K-T, Mardini S, Chuang DC-C et al (2007) Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg 120:187–195. https://doi.org/10.1097/01.prs.0000264077.07779.50
doi: 10.1097/01.prs.0000264077.07779.50 pubmed: 17572562
Salgado CJ, Chim H, Schoenoff S et al (2010) Postoperative care and monitoring of the reconstructed head and neck patient. Semin Plast Surg 24:281–287. https://doi.org/10.1055/s-0030-1263069
doi: 10.1055/s-0030-1263069 pubmed: 22550449 pmcid: 3324228
Hayler R, Low T-HH, Fung K et al (2021) Implantable Doppler ultrasound monitoring in head and neck free flaps: balancing the pros and cons. Laryngoscope 131:E1854–E1859. https://doi.org/10.1002/lary.29247
doi: 10.1002/lary.29247 pubmed: 33141464
Devine JC, Potter LA, Magennis P et al (2001) Flap monitoring after head and neck reconstruction: evaluating an observation protocol. J Wound Care 10:525–529. https://doi.org/10.12968/jowc.2001.10.1.26037
doi: 10.12968/jowc.2001.10.1.26037 pubmed: 12964236
Smit JM, Acosta R, Zeebregts CJ et al (2007) Early reintervention of compromised free flaps improves success rate. Microsurgery 27:612–616. https://doi.org/10.1002/micr.20412
doi: 10.1002/micr.20412 pubmed: 17868141

Auteurs

Mark Ooms (M)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. mooms@ukaachen.de.

Philipp Winnand (P)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Marius Heitzer (M)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Florian Peters (F)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Anna Bock (A)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Marie Katz (M)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Frank Hölzle (F)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Ali Modabber (A)

Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH