Chronic Stress, Depression, and Alzheimer's Disease: The Triangle of Oblivion.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
medline: 23 10 2023
pubmed: 1 8 2023
entrez: 31 7 2023
Statut: ppublish

Résumé

Chronic stress and high levels of the main stress hormones, and glucocorticoids (GC), are implicated in susceptibility to brain pathologies such as depression and Alzheimer's disease (AD), as they promote neural plasticity damage and glial reactivity, which can lead to dendritic/synaptic loss, reduced neurogenesis, mood deficits, and impaired cognition. Moreover, depression is implicated in the development of AD with chronic stress being a potential link between both disorders via common neurobiological underpinnings. Hereby, we summarize and discuss the clinical and preclinical evidence related to the detrimental effect of chronic stress as a precipitator of AD through the activation of pathological mechanisms leading to the accumulation of amyloid β (Aβ) and Tau protein. Given that the modern lifestyle increasingly exposes individuals to high stress loads, it is clear that understanding the mechanistic link(s) between chronic stress, depression, and AD pathogenesis may facilitate the treatment of AD and other stress-related disorders.

Identifiants

pubmed: 37525058
doi: 10.1007/978-3-031-31978-5_31
doi:

Substances chimiques

Amyloid beta-Peptides 0
tau Proteins 0
Glucocorticoids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

303-315

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Decade of healthy ageing: baseline report [WWW Document], n.d.. URL https://www.who.int/publications/i/item/9789240017900 (accessed 4.13.21).
Bettio, L.E.B., Rajendran, L., Gil-Mohapel, J., 2017. The effects of aging in the hippocampus and cognitive decline. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2017.04.030
Burke, S.N., Barnes, C.A., 2006. Neural plasticity in the ageing brain. Nature Reviews Neuroscience. https://doi.org/10.1038/nrn1809
Sale, A., Berardi, N., Maffei, L., 2014. Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiological Reviews 94, 189–234. https://doi.org/10.1152/physrev.00036.2012
doi: 10.1152/physrev.00036.2012 pubmed: 24382886
Mufson, E.J., Mahady, L., Waters, D., Counts, S.E., Perez, S.E., DeKosky, S.T., Ginsberg, S.D., Ikonomovic, M.D., Scheff, S.W., Binder, L.I., 2015. Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 309, 51–67. https://doi.org/10.1016/j.neuroscience.2015.03.006
doi: 10.1016/j.neuroscience.2015.03.006 pubmed: 25772787
Scheff, S.W., Price, D.A., Schmitt, F.A., Mufson, E.J., 2006. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging 27, 1372–1384. https://doi.org/10.1016/j.neurobiolaging.2005.09.012
doi: 10.1016/j.neurobiolaging.2005.09.012 pubmed: 16289476
World Alzheimer Report, 2019. World Alzheimer Report 2019, Attitudes to dementia. Alzheimer’s Disease International: London.
McEwen, B.S., 1999. Stress and hippocampal plasticity. Annual Review of Neuroscience. https://doi.org/10.1146/annurev.neuro.22.1.105
Vyas, S., Rodrigues, A.J., Silva, J.M., Tronche, F., Almeida, O.F.X., Sousa, N., Sotiropoulos, I., 2016. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural plasticity 2016, 6391686. https://doi.org/10.1155/2016/6391686
doi: 10.1155/2016/6391686 pubmed: 27034847 pmcid: 4806285
Depression and Other Common Mental Disorders [WWW Document], n.d. URL https://www.who.int/publications/i/item/depression-global-health-estimates (accessed 4.13.21).
Cain, D.W., Cidlowski, J.A., 2017. Immune regulation by glucocorticoids. Nat Rev Immunol 17, 233–247. https://doi.org/10.1038/nri.2017.1
doi: 10.1038/nri.2017.1 pubmed: 28192415 pmcid: 9761406
Geraghty, A.C., Kaufer, D., 2015. Glucocorticoid regulation of reproduction. Advances in Experimental Medicine and Biology 872, 253–278. https://doi.org/10.1007/978-1-4939-2895-8_11
doi: 10.1007/978-1-4939-2895-8_11 pubmed: 26215998
Kapoor, A., Dunn, E., Kostaki, A., Andrews, M.H., Matthews, S.G., 2006. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. The Journal of Physiology 572, 31–44. https://doi.org/10.1113/jphysiol.2006.105254
doi: 10.1113/jphysiol.2006.105254 pubmed: 16469780 pmcid: 1779638
Gray, J.D., Kogan, J.F., Marrocco, J., McEwen, B.S., 2017. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 13, 661–673. https://doi.org/10.1038/nrendo.2017.97
doi: 10.1038/nrendo.2017.97 pubmed: 28862266
Juszczak, G.R., Stankiewicz, A.M., 2018. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 82, 136–168. https://doi.org/10.1016/j.pnpbp.2017.11.020
doi: 10.1016/j.pnpbp.2017.11.020 pubmed: 29180230
Lucassen, P.J., Pruessner, J., Sousa, N., Almeida, O.F.X., Van Dam, A.M., Rajkowska, G., Swaab, D.F., Czéh, B., 2014. Neuropathology of stress. Acta Neuropathol 127, 109–135. https://doi.org/10.1007/s00401-013-1223-5
doi: 10.1007/s00401-013-1223-5 pubmed: 24318124
Sousa, N., Almeida, O.F.X., 2012. Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci 35, 742–751. https://doi.org/10.1016/j.tins.2012.08.006
doi: 10.1016/j.tins.2012.08.006 pubmed: 23000140
Egeland, M., Zunszain, P.A., Pariante, C.M., 2015. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16, 189–200. https://doi.org/10.1038/nrn3855
doi: 10.1038/nrn3855 pubmed: 25790864
Wong, E.Y.H., Herbert, J., 2006. Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137, 83–92. https://doi.org/10.1016/j.neuroscience.2005.08.073
doi: 10.1016/j.neuroscience.2005.08.073 pubmed: 16289354
Sotiropoulos, I., Catania, C., Pinto, L.G., Silva, R., Pollerberg, G.E., Takashima, A., Sousa, N., Almeida, O.F.X., 2011. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. Journal of Neuroscience 31, 7840–7847. https://doi.org/10.1523/JNEUROSCI.0730-11.2011
doi: 10.1523/JNEUROSCI.0730-11.2011 pubmed: 21613497
de Kloet, E.R., Joëls, M., Holsboer, F., 2005. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463–475. https://doi.org/10.1038/nrn1683
doi: 10.1038/nrn1683 pubmed: 15891777
Santos, A., Webb, S.M., Resmini, E., 2021. Psychological complications of Cushing’s syndrome. Current Opinion in Endocrinology, Diabetes & Obesity 28, 325–329. https://doi.org/10.1097/MED.0000000000000633
doi: 10.1097/MED.0000000000000633
Teng, T., Shively, C.A., Li, X., Jiang, X., Neigh, G.N., Yin, B., Zhang, Y., Fan, L., Xiang, Y., Wang, M., Liu, X., Qin, M., Zhou, X., Xie, P., 2021. Chronic unpredictable mild stress produces depressive-like behavior, hypercortisolemia, and metabolic dysfunction in adolescent cynomolgus monkeys. Translational Psychiatry 11. https://doi.org/10.1038/s41398-020-01132-6
Sheline, Y.I., Wang, P.W., GADOtS, M.H., Csernansky, J.G., VANNIERtt, M.W., 1996. Hippocampal atrophy in recurrent major depression, Medical Sciences.
Sheline, Y.I., Gado, M.H., Kraemer, H.C., 2003. Untreated Depression and Hippocampal Volume Loss, Am J Psychiatry.
Rajkowska, G., Miguel-Hidalgo, J.J., Wei, J., Dilley, G., Pittman, S.D., Meltzer, H.Y., Overholser, J.C., Roth, B.L., Stockmeier, C.A., 1999. PRIORITY COMMUNICATION Morphometric Evidence for Neuronal and Glial Prefrontal Cell Pathology in Major Depression*, Biol Psychiatry.
Yucel, K., McKinnon, M.C., Chahal, R., Taylor, V.H., Macdonald, K., Joffe, R., MacQueen, G.M., 2008. Anterior cingulate volumes in never-treated patients with major depressive disorder. Neuropsychopharmacology 33, 3157–3163. https://doi.org/10.1038/npp.2008.40
doi: 10.1038/npp.2008.40 pubmed: 18368034
Sousa, N., Cerqueira, J.J., Almeida, O.F.X., 2008. Corticosteroid receptors and neuroplasticity. Brain Res Rev 57, 561–570. https://doi.org/10.1016/j.brainresrev.2007.06.007
doi: 10.1016/j.brainresrev.2007.06.007 pubmed: 17692926
Huang, C.W., Lui, C.C., Chang, W.N., Lu, C.H., Wang, Y.L., Chang, C.C., 2009. Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. Journal of Clinical Neuroscience 16, 1283–1286. https://doi.org/10.1016/j.jocn.2008.12.026
doi: 10.1016/j.jocn.2008.12.026 pubmed: 19570680
Sierra-Fonseca, J.A., Gosselink, K.L., 2018. Tauopathy and neurodegeneration: A role for stress. Neurobiology of Stress 9, 105–112. https://doi.org/10.1016/j.ynstr.2018.08.009
doi: 10.1016/j.ynstr.2018.08.009 pubmed: 30450376 pmcid: 6234266
Wilson, R.S., Barnes, L.L., Bennett, D.A., Li, Y., Bienias, J.L., Leon, C.F.M.D., Evans, D.A., 2005. Proneness to psychological distress and risk of Alzheimer disease in a biracial community. Neurology 64, 380–382. https://doi.org/10.1212/01.WNL.0000149525.53525.E7
doi: 10.1212/01.WNL.0000149525.53525.E7 pubmed: 15668449
Caruso, A., Nicoletti, F., Gaetano, A., Scaccianoce, S., 2019. Risk Factors for Alzheimer’s Disease: Focus on Stress. Frontiers in Pharmacology 10.
Justice, N.J., 2018. The relationship between stress and Alzheimer’s disease. Neurobiol Stress 8, 127–133. https://doi.org/10.1016/j.ynstr.2018.04.002
doi: 10.1016/j.ynstr.2018.04.002 pubmed: 29888308 pmcid: 5991350
Ouanes, S., Popp, J., 2019. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front Aging Neurosci 11, 43. https://doi.org/10.3389/fnagi.2019.00043
doi: 10.3389/fnagi.2019.00043 pubmed: 30881301 pmcid: 6405479
Greenwald, B.S., Mathe, A.A., Mohs, R.C., Levy, M.I., Johns, C.A., Davis, K.L., 1986. Cortisol and Alzheimer’s disease, II: Dexamethasone suppression, dementia severity, and affective symptoms. American Journal of Psychiatry. https://doi.org/10.1176/ajp.143.4.442
Hatzinger, M., Z’Brun, A., Hemmeter, U., Seifritz, E., Baumann, F., Holsboer-Trachsler, E., Heuser, I.J., 1995. Hypothalamic-pituitary-adrenal system function in patients with alzheimer’s disease. Neurobiology of Aging 16, 205– 209. https://doi.org/10.1016/0197-4580(94)00159-6
doi: 10.1016/0197-4580(94)00159-6 pubmed: 7777138
Peskind, E.R., Wilkinson, C.W., Petrie, E.C., Schellenberg, G.D., Raskind, M.A., 2001. Increased CSF cortisol in AD is a function of APOE genotype. Neurology. https://doi.org/10.1212/WNL.56.8.1094
Hartmann, A., Veldhuis, J.D., Deuschle, M., Standhardt, H., Heuser, I., 1997. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiology of Aging 18, 285–289. https://doi.org/10.1016/S0197-4580(97)80309-0
doi: 10.1016/S0197-4580(97)80309-0 pubmed: 9263193
Swerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clinical interventions in aging.
Mejía, S., Giraldo, M., Pineda, D., Ardila, A., Lopera, F., 2003. Nongenetic Factors as Modifiers of the Age of Onset of Familial Alzheimer’s Disease. International Psychogeriatrics 15, 337–349. https://doi.org/10.1017/S1041610203009591
doi: 10.1017/S1041610203009591 pubmed: 15000414
Rothman, S.M., Mattson, M.P., 2010. Adverse stress, hippocampal networks, and Alzheimer’s disease. NeuroMolecular Medicine. https://doi.org/10.1007/s12017-009-8107-9
Simard, M., Hudon, C., Reekum, R., 2009. Psychological distress and risk for dementia. Current Psychiatry Reports. https://doi.org/10.1007/s11920-009-0007-z
Csernansky, J.G., Dong, H., Fagan, A.M., Wang, L., Xiong, C., Holtzman, D.M., Morris, J.C., 2006. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry. https://doi.org/10.1176/ajp.2006.163.12.2164
Elgh, E., Lindqvist Åstot, A., Fagerlund, M., Eriksson, S., Olsson, T., Näsman, B., 2006. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biological Psychiatry 59, 155–161. https://doi.org/10.1016/j.biopsych.2005.06.017
doi: 10.1016/j.biopsych.2005.06.017 pubmed: 16125145
Catania, C., Sotiropoulos, I., Silva, R., Onofri, C., Breen, K.C., Sousa, N., Almeida, O.F.X., 2009. The amyloidogenic potential and behavioral correlates of stress. Molecular Psychiatry 14, 95–105. https://doi.org/10.1038/sj.mp.4002101
doi: 10.1038/sj.mp.4002101 pubmed: 17912249
Green, K.N., Billings, L.M., Roozendaal, B., McGaugh, J.L., LaFerla, F.M., 2006. Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience 26, 9047–9056. https://doi.org/10.1523/JNEUROSCI.2797-06.2006
doi: 10.1523/JNEUROSCI.2797-06.2006 pubmed: 16943563
Xia, M., Yang, L., Sun, G., Qi, S., Li, B., 2017. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234, 365–379. https://doi.org/10.1007/s00213-016-4473-9
doi: 10.1007/s00213-016-4473-9 pubmed: 27837334
Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., Eersel, J. van, Wölfing, H., Chieng, B.C., Christie, M.J., Napier, I.A., Eckert, A., Staufenbiel, M., Hardeman, E., Götz, J., 2010. Dendritic function of tau mediates amyloid-β toxicity in alzheimer’s disease mouse models. Cell 142, 387–397. https://doi.org/10.1016/j.cell.2010.06.036
Lopes, S., Vaz-Silva, J., Pinto, V., Dalla, C., Kokras, N., Bedenk, B., Mack, N., Czisch, M., Almeida, O.F.X., Sousa, N., Sotiropoulos, I., 2016b. Tau protein is essential for stress-induced brain pathology. PNAS 113, E3755–E3763. https://doi.org/10.1073/pnas.1600953113
doi: 10.1073/pnas.1600953113 pubmed: 27274066 pmcid: 4932951
Pinheiro, S., Silva, J., Mota, C., Vaz-Silva, J., Veloso, A., Pinto, V., Sousa, N., Cerqueira, J., Sotiropoulos, I., 2016. Tau Mislocation in Glucocorticoid-Triggered Hippocampal Pathology. Mol Neurobiol 53, 4745–4753. https://doi.org/10.1007/s12035-015-9356-2
doi: 10.1007/s12035-015-9356-2 pubmed: 26328538
Silva, J.M., Rodrigues, S., Sampaio-Marques, B., Gomes, P., Neves-Carvalho, A., Dioli, C., Soares-Cunha, C., Mazuik, B.F., Takashima, A., Ludovico, P., Wolozin, B., Sousa, N., Sotiropoulos, I., 2019. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ 26, 1411–1427. https://doi.org/10.1038/s41418-018-0217-1
doi: 10.1038/s41418-018-0217-1 pubmed: 30442948
Vaz-Silva, J., Gomes, P., Jin, Q., Zhu, M., Zhuravleva, V., Quintremil, S., Meira, T., Silva, J., Dioli, C., Soares-Cunha, C., Daskalakis, N.P., Sousa, N., Sotiropoulos, I., Waites, C.L., 2018. Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction. EMBO J 37. https://doi.org/10.15252/embj.201899084
Lopes, S., Lopes, A., Pinto, V., Guimarães, M.R., Sardinha, V.M., Duarte-Silva, S., Pinheiro, S., Pizarro, J., Oliveira, J.F., Sousa, N., Leite-Almeida, H., Sotiropoulos, I., 2016a. Absence of Tau triggers age-dependent sciatic nerve morphofunctional deficits and motor impairment. Aging Cell 15, 208–216. https://doi.org/10.1111/acel.12391
doi: 10.1111/acel.12391 pubmed: 26748966 pmcid: 4783352
Sotiropoulos, I., Silva, J.M., Gomes, P., Sousa, N., Almeida, O.F.X., 2019. Stress and the Etiopathogenesis of Alzheimer’s Disease and Depression, in: Takashima, A., Wolozin, B., Buee, L. (Eds.), Tau Biology, Advances in Experimental Medicine and Biology. Springer, Singapore, pp. 241–257. https://doi.org/10.1007/978-981-32-9358-8_20
doi: 10.1007/978-981-32-9358-8_20
Pedersen, W.A., McCullers, D., Culmsee, C., Haughey, N.J., Herman, J.P., Mattson, M.P., 2001. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiology of Disease 8, 492–503. https://doi.org/10.1006/nbdi.2001.0395
doi: 10.1006/nbdi.2001.0395 pubmed: 11442356
Filipcik, P., Novak, P., Mravec, B., Ondicova, K., Krajciova, G., Novak, M., Kvetnansky, R., 2012. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: Up-regulation by stress. Cellular and Molecular Neurobiology 32, 837–845. https://doi.org/10.1007/s10571-011-9788-9
doi: 10.1007/s10571-011-9788-9 pubmed: 22222439
Rissman, R.A., Lee, K.F., Vale, W., Sawchenko, P.E., 2007. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. Journal of Neuroscience 27, 6552–6562. https://doi.org/10.1523/JNEUROSCI.5173-06.2007
doi: 10.1523/JNEUROSCI.5173-06.2007 pubmed: 17567816
Rissman, R.A., Staup, M.A., Lee, A.R., Justice, N.J., Rice, K.C., Vale, W., Sawchenko, P.E., 2012. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proceedings of the National Academy of Sciences of the United States of America 109, 6277–6282. https://doi.org/10.1073/pnas.1203140109
doi: 10.1073/pnas.1203140109 pubmed: 22451915 pmcid: 3341026
Wang, T.Y., Wei, H.T., Liou, Y.J., Su, T.P., Bai, Y.M., Tsai, S.J., Yang, A.C., Chen, T.J., Tsai, C.F., Chen, M.H., 2016. Risk for developing dementia among patients with posttraumatic stress disorder: A nationwide longitudinal study. Journal of Affective Disorders 205, 306–310. https://doi.org/10.1016/j.jad.2016.08.013
doi: 10.1016/j.jad.2016.08.013 pubmed: 27552595
Sotiropoulos, I., Catania, C., Riedemann, T., Fry, J.P., Breen, K.C., Michaelidis, T.M., Almeida, O.F.X., 2008a. Glucocorticoids trigger Alzheimer disease-like pathobiochemistry in rat neuronal cells expressing human tau. Journal of Neurochemistry 107, 385–397. https://doi.org/10.1111/j.1471-4159.2008.05613.x
doi: 10.1111/j.1471-4159.2008.05613.x pubmed: 18691381
Sotiropoulos, I., Cerqueira, J.J., Catania, C., Takashima, A., Sousa, N., Almeida, O.F.X., 2008b. Stress and glucocorticoid footprints in the brain—The path from depression to Alzheimer’s disease. Neuroscience & Biobehavioral Reviews 32, 1161–1173. https://doi.org/10.1016/j.neubiorev.2008.05.007
doi: 10.1016/j.neubiorev.2008.05.007
Green, R.C., Cupples, L.A., Kurz, A., Auerbach, S., Go, R., Sadovnick, D., Duara, R., Kukull, W.A., Chui, H., Edeki, T., Griffith, P.A., Friedland, R.P., Bachman, D., Farrer, L., 2003a. Depression as a risk factor for Alzheimer disease: The MIRAGE Study. Archives of Neurology 60, 753–759. https://doi.org/10.1001/archneur.60.5.753
doi: 10.1001/archneur.60.5.753 pubmed: 12756140
Speck, C.E., Kukull, W.A., Brenner, D.E., Bowen, J.D., McCormick, W.C., Teri, L., Pfanschmidt, M.L., Thompson, J.D., Larson, E.B., 1995. History of depression as a risk factor for Alzheimer’s disease. Epidemiology 6, 366–369. https://doi.org/10.1097/00001648-199507000-00006
doi: 10.1097/00001648-199507000-00006 pubmed: 7548342
Post, A., Ackl, N., Rücker, M., Schreiber, Y., Binder, E.B., Ising, M., Sonntag, A., Holsboer, F., Almeida, O.F.X., 2006. Toward a Reliable Distinction Between Patients with Mild Cognitive Impairment and Alzheimer-Type Dementia Versus Major Depression. Biological Psychiatry 59, 858–862. https://doi.org/10.1016/j.biopsych.2005.09.007
doi: 10.1016/j.biopsych.2005.09.007 pubmed: 16325150
Sheline, Y.I., West, T., Yarasheski, K., Swarm, R., Jasielec, M.S., Fisher, J.R., Ficker, W.D., Yan, P., Xiong, C., Frederiksen, C., Grzelak, M. V., Chott, R., Bateman, R.J., Morris, J.C., Mintun, M.A., Lee, J.M., Cirrito, J.R., 2014. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Science Translational Medicine 6, 236re4. https://doi.org/10.1126/scitranslmed.3008169
doi: 10.1126/scitranslmed.3008169 pubmed: 24828079 pmcid: 4269372
Ownby, R.L., Crocco, E., Acevedo, A., John, V., Loewenstein, D., 2006. Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Archives of General Psychiatry 63, 530–538. https://doi.org/10.1001/archpsyc.63.5.530
doi: 10.1001/archpsyc.63.5.530 pubmed: 16651510 pmcid: 3530614
Bangasser, D.A., Dong, H., Carroll, J., Plona, Z., Ding, H., Rodriguez, L., McKennan, C., Csernansky, J.G., Seeholzer, S.H., Valentino, R.J., 2017. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Molecular psychiatry 22, 1126–1133. https://doi.org/10.1038/mp.2016.185
doi: 10.1038/mp.2016.185 pubmed: 27752081
Lucassen, P.J., Oomen, C.A., 2016. Stress, hippocampal neurogenesis and cognition: functional correlations. Frontiers in Biology 11, 182–192. https://doi.org/10.1007/s11515-016-1412-4
doi: 10.1007/s11515-016-1412-4
Sotiropoulos, I., Sousa, N., 2016. Tau as the Converging Protein between Chronic Stress and Alzheimer’s Disease Synaptic Pathology. Neuro-degenerative diseases 16, 22–5. https://doi.org/10.1159/000440844
doi: 10.1159/000440844 pubmed: 26551025
Bennett, S., Thomas, A.J., 2014. Depression and dementia: cause, consequence or coincidence? Maturitas 79, 184–190. https://doi.org/10.1016/j.maturitas.2014.05.009
doi: 10.1016/j.maturitas.2014.05.009 pubmed: 24931304
Andersen, K., Lolk, A., Kragh-Sørensen, P., Petersen, N.E., Green, A., 2005. Depression and the risk of Alzheimer disease. Epidemiology 16, 233–238. https://doi.org/10.1097/01.ede.0000152116.32580.24
doi: 10.1097/01.ede.0000152116.32580.24 pubmed: 15703539
Jorm, A.F., 2001. History of depression as a risk factor for dementia: an updated review, Australian and New Zealand Journal of Psychiatry.
Ismail, Z., Elbayoumi, H., Fischer, C.E., Hogan, D.B., Millikin, C.P., Schweizer, T., Mortby, M.E., Smith, E.E., Patten, S.B., Fiest, K.M., 2017. Prevalence of depression in patients with mild cognitive impairment: A systematic review and meta-analysis. JAMA Psychiatry 74, 58–67. https://doi.org/10.1001/jamapsychiatry.2016.3162
doi: 10.1001/jamapsychiatry.2016.3162 pubmed: 27893026
Weisenbach, S.L., Kim, J., Hammers, D., Konopacki, K., Koppelmans, V., 2019. Linking late life depression and Alzheimer’s disease: mechanisms and resilience. Curr Behav Neurosci Rep 6, 103–112. https://doi.org/10.1007/s40473-019-00180-7
doi: 10.1007/s40473-019-00180-7 pubmed: 33134032 pmcid: 7597973
Arbus, C., Gardette, V., Cantet, C.E., Andrieu, S., Nourhashemi, F., Schmitt, L., Vellas, B., 2011. Incidence and predictive factors of depressive symptoms in Alzheimer’s disease: The REAL.FR study. The journal of nutrition, health & aging 15, 609–617. https://doi.org/10.1007/s12603-011-0061-1
doi: 10.1007/s12603-011-0061-1
Hazzouri, A.Z.A., Vittinghoff, E., Byers, A., Covinsky, K., Blazer, D., Diem, S., Ensrud, K.E., Yaffe, K., 2014. Long-term cumulative depressive symptom burden and risk of cognitive decline and dementia among very old women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences 69 A, 595–601. https://doi.org/10.1093/gerona/glt139
doi: 10.1093/gerona/glt139
Talarowska, M., Zajączkowska, M., Gałecki, P., 2015. Cognitive functions in first-episode depression and recurrent depressive disorder. Psychiatria Danubina 27, 38–43.
pubmed: 25751430
Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K., Broich, K., Cavedo, E., Crutch, S., Dartigues, J.-F., Duyckaerts, C., Epelbaum, S., Frisoni, G.B., Gauthier, S., Genthon, R., Gouw, A.A., Habert, M.-O., Holtzman, D.M., Kivipelto, M., Lista, S., Molinuevo, J.-L., O’Bryant, S.E., Rabinovici, G.D., Rowe, C., Salloway, S., Schneider, L.S., Sperling, R., Teichmann, M., Carrillo, M.C., Cummings, J., Jack, C.R., 2016. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 12, 292– 323. https://doi.org/10.1016/j.jalz.2016.02.002
doi: 10.1016/j.jalz.2016.02.002 pubmed: 27012484 pmcid: 6417794
Modrego, P.J., Ferrández, J., 2004. Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study. Arch Neurol 61, 1290–1293. https://doi.org/10.1001/archneur.61.8.1290
doi: 10.1001/archneur.61.8.1290 pubmed: 15313849
Rapp, M.A., Schnaider-Beeri, M., Grossmanṅ, H.T., Sano, M., Perl, D.P., Purohit, D.P., Gorman, J.M., Haroutunian, V., 2006. Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry 63(2), 161-7
doi: 10.1001/archpsyc.63.2.161 pubmed: 16461859
Donovan, N.J., Locascio, J.J., Marshall, G.A., Gatchel, J., Hanseeuw, B.J., Rentz, D.M., Johnson, K.A., Sperling, R.A., 2018 Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am J Psychiatry 175(6), 530-537. https://doi.oorg/10.1176/appi.ajp.2017.17040442
doi: 10.1176/appi.ajp.2017.17040442 pubmed: 29325447 pmcid: 5988933
Gatchel, J.R., Donovan, N.J., Locascio, J.J., Schultz, A.P., Becker, J.A., Chhatwal, J., Papp, K.V., Amariglio, R.E., Rentz, D.M., Blacker, D., Sperling, R.A., Johnson, K.A., Marshall, G.A., 2017. Depressive Symptoms and Tau Accumulation in the Inferior Temporal Lobe and Entorhinal Cortex in Cognitively Normal Older Adults: A Pilot Study. Journal of Alzheimer’s Disease 59, 975–985. https://doi.org/10.3233/JAD-170001
doi: 10.3233/JAD-170001 pubmed: 28697559
Boku, S., Nakagawa, S., Toda, H., Hishimoto, A., 2018. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Computer Graphics Forum 37, 3–12. https://doi.org/10.1111/pcn.12604
doi: 10.1111/pcn.12604
Cerqueira, J.J., Pêgo, J.M., Taipa, R., Bessa, J.M., Almeida, O.F.X., Sousa, N., 2005. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. Journal of Neuroscience 25, 7792–7800. https://doi.org/10.1523/JNEUROSCI.1598-05.2005
doi: 10.1523/JNEUROSCI.1598-05.2005 pubmed: 16120780
Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q., Mucke, L., 2007. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750– 754. https://doi.org/10.1126/science.1141736
doi: 10.1126/science.1141736 pubmed: 17478722
Morais, M., Santos, P.A.R., Mateus-Pinheiro, A., Patrício, P., Pinto, L., Sousa, N., Pedroso, P., Almeida, S., Filipe, A., Bessa, J.M., 2014. The effects of chronic stress on hippocampal adult neurogenesis and dendritic plasticity are reversed by selective MAO-A inhibition. Journal of psychopharmacology (Oxford, England) 28, 1178–83. https://doi.org/10.1177/0269881114553646
doi: 10.1177/0269881114553646 pubmed: 25315831
Moreno-Jiménez, E.P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., Llorens-Martín, M., 2019. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine 25, 554–560. https://doi.org/10.1038/s41591-019-0375-9
doi: 10.1038/s41591-019-0375-9 pubmed: 30911133
Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W., James, D., Mayer, S., Chang, J., Auguste, K.I., Chang, E.F., Gutierrez, A.J., Kriegstein, A.R., Mathern, G.W., Oldham, M.C., Huang, E.J., Garcia-Verdugo, J.M., Yang, Z., Alvarez-Buylla, A., 2018. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381. https://doi.org/10.1038/nature25975
doi: 10.1038/nature25975 pubmed: 29513649 pmcid: 6179355
Lucassen, P.J., Meerlo, P., Naylor, A.S., van Dam, A.M., Dayer, A.G., Fuchs, E., Oomen, C.A., Czéh, B., 2010. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 20, 1–17. https://doi.org/10.1016/j.euroneuro.2009.08.003
doi: 10.1016/j.euroneuro.2009.08.003 pubmed: 19748235
Mu, Y., Gage, F.H., 2011. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Molecular neurodegeneration 6, 85. https://doi.org/10.1186/1750-1326-6-85
doi: 10.1186/1750-1326-6-85 pubmed: 22192775 pmcid: 3261815
Dioli, C., Patrício, P., Pinto, L.G., Marie, C., Morais, M., Vyas, S., Bessa, J.M., Pinto, L., Sotiropoulos, I., 2021. Adult neurogenic process in the subventricular zone - olfactory bulb system is regulated by Tau protein under prolonged stress. Cell Proliferation 54. https://doi.org/10.1111/cpr.13027
Dioli, C., Patrício, P., Trindade, R., Pinto, L.G., Silva, J.M., Morais, M., Ferreiro, E., Borges, S., Mateus-Pinheiro, A., Rodrigues, A.J., Sousa, N., Bessa, J.M., Pinto, L., Sotiropoulos, I., 2017. Tau-dependent suppression of adult neurogenesis in the stressed hippocampus. Mol Psychiatry 22, 1110–1118. https://doi.org/10.1038/mp.2017.103
doi: 10.1038/mp.2017.103 pubmed: 28555078
Sotiropoulos, I., Galas, M.-C., Silva, J.M., Skoulakis, E., Wegmann, S., Maina, M.B., Blum, D., Sayas, C.L., Mandelkow, E.-M.E., Mandelkow, E.-M.E., Spillantini, M.G., Sousa, N., Avila, J., Medina, M., Mudher, A., Buee, L., 2017. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications 5, 91. https://doi.org/10.1186/s40478-017-0489-6
doi: 10.1186/s40478-017-0489-6 pubmed: 29187252 pmcid: 5707803
Fuster-Matanzo, A., Llorens-Martín, M., Jurado-Arjona, J., Avila, J., Hernández, F., 2012. Tau protein and adult hippocampal neurogenesis. Frontiers in neuroscience 6, 104. https://doi.org/10.3389/fnins.2012.00104
doi: 10.3389/fnins.2012.00104 pubmed: 22787440 pmcid: 3391648
Boekhoorn, K., Joels, M., Lucassen, P.J., 2006. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease 24, 1–14. https://doi.org/10.1016/j.nbd.2006.04.017
doi: 10.1016/j.nbd.2006.04.017 pubmed: 16814555
Crews, L., Adame, A., Patrick, C., Delaney, A., Pham, E., Rockenstein, E., Hansen, L., Masliah, E., 2010. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 12252–62. https://doi.org/10.1523/JNEUROSCI.1305-10.2010
doi: 10.1523/JNEUROSCI.1305-10.2010 pubmed: 20844121
Hamilton, L.K., Aumont, A., Julien, C., Vadnais, A., Calon, F., Fernandes, K.J.L.L., 2010. Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer’s disease. The European journal of neuroscience 32, 905–20. https://doi.org/10.1111/j.1460-9568.2010.07379.x
doi: 10.1111/j.1460-9568.2010.07379.x pubmed: 20726889
Chen, S., Townsend, K., Goldberg, T.E., Davies, P., Conejero-Goldberg, C., 2010. MAPT isoforms: differential transcriptional profiles related to 3R and 4R splice variants. Journal of Alzheimer’s disease : JAD 22, 1313–29. https://doi.org/10.3233/JAD-2010-101155
doi: 10.3233/JAD-2010-101155 pubmed: 20930284
Sennvik, K., Boekhoorn, K., Lasrado, R., Terwel, D., Verhaeghe, S., Korr, H., Schmitz, C., Tomiyama, T., Mori, H., Krugers, H., Joels, M., Ramakers, G.J.A., Lucassen, P.J., Van Leuven, F., 2007. Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21, 2149–61. https://doi.org/10.1096/fj.06-7735com
doi: 10.1096/fj.06-7735com pubmed: 17341679
Schoch, K.M.M., DeVos, S.L.L., Miller, R.L.L., Chun, S.J.J., Norrbom, M., Wozniak, D.F.F., Dawson, H.N.N., Bennett, C.F., Rigo, F., Miller, T.M.M., 2016. Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model. Neuron. https://doi.org/10.1016/j.neuron.2016.04.042
La Rosa, C., Parolisi, R., Bonfanti, L., 2020. Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Frontiers in Neuroscience 14, 75. https://doi.org/10.3389/fnins.2020.00075
doi: 10.3389/fnins.2020.00075 pubmed: 32116519 pmcid: 7010851
Iovino, M., Agathou, S., González-Rueda, A., Del Castillo Velasco-Herrera, M., Borroni, B., Alberici, A., Lynch, T., O’Dowd, S., Geti, I., Gaffney, D., Vallier, L., Paulsen, O., Káradóttir, R.T., Spillantini, M.G., 2015. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. https://doi.org/10.1093/brain/awv222
Cho, J.-H., Johnson, G.V.W., 2004. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. Journal of neurochemistry 88, 349–58.
doi: 10.1111/j.1471-4159.2004.02155.x pubmed: 14690523
Shahani, N., Brandt, R., 2002. Functions and malfunctions of the tau proteins. Cellular and molecular life sciences : CMLS 59, 1668–80.
doi: 10.1007/PL00012495 pubmed: 12475178

Auteurs

Chrysoula Dioli (C)

Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Georgia Papadimitriou (G)

Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.

Anastasia Megalokonomou (A)

Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.

Carlos Marques (C)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Nuno Sousa (N)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Ioannis Sotiropoulos (I)

Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece. ioannis@bio.demokritos.gr.
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. ioannis@bio.demokritos.gr.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. ioannis@bio.demokritos.gr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH