Enhanced single-base mutation diversity by the combination of cytidine deaminase with DNA-repairing enzymes in yeast.

Saccharomyces cerevisiae T7 promoter cytidine deaminase fusion mutagenesis synthetic biology

Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Nov 2023
Historique:
revised: 20 07 2023
received: 26 03 2023
accepted: 28 07 2023
medline: 13 11 2023
pubmed: 2 8 2023
entrez: 2 8 2023
Statut: ppublish

Résumé

The occurrence of random mutations can increase the diversity of the genome and promote the evolutionary process of organisms. High efficiency mutagenesis techniques significantly accelerate the evolutionary process. In this work, we describe a targeted mutagenesis system named MutaT7

Identifiants

pubmed: 37529889
doi: 10.1002/biot.202300137
doi:

Substances chimiques

Cytidine Deaminase EC 3.5.4.5
DNA 9007-49-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2300137

Subventions

Organisme : National Key Research and Development Program of China
ID : 2018YFA0900100
Organisme : Tianjin Fund for Distinguished Young Scholars
ID : 19JCJQJC63300

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Bracher, J. M., de Hulster, E., Koster, C. C., van den Broek, M., Daran, J. G., van Maris, A. J. A., & Pronk, J. T. (2017). Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations. Appl Environ Microbiol, 83, e00892-17.
Wang, M., Li, S., & Zhao, H. (2016). Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113, 206-215.
Reyes, L. H., Gomez, J. M., & Kao, K. C. (2014). Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 21, 26-33.
Kim, S. R., Skerker, J. M., Kang, W., Lesmana, A., Wei, N., Arkin, A. P., & Jin, Y. S. (2013). Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE, 8, e57048.
Patzschke, A., Steiger, M. G., Holz, C., Lang, C., Mattanovich, D., & Sauer, M. (2015). Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnology Journal, 10, 1719-1726.
Wang, G., Li, Q., Zhang, Z., Yin, X., Wang, B., & Yang, X. (2023). Recent progress in adaptive laboratory evolution of industrial microorganisms. Journal of Industrial Microbiology & Biotechnology, 50, kuac023.
Hashimoto, S., Ogura, M., Aritomi, K., Hoshida, H., Nishizawa, Y., & Akada, R. (2005). Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Applied and Environmental Microbiology, 71, 312-319.
Patnaik, R. (2008). Engineering complex phenotypes in industrial strains. Biotechnology Progress, 24, 38-47.
Jiang, G., Yang, Z., Wang, Y., Yao, M., Chen, Y., Xiao, W., & Yuan, Y. (2020). Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochemical Engineering Journal, 156, 107519.
Roy, K. R., Smith, J. D., Vonesch, S. C., Lin, G., Tu, C. S., Lederer, A. R., Chu, A., Suresh, S., Nguyen, M., Horecka, J., Tripathi, A., Burnett, W. T., Morgan, M. A., Schulz, J., Orsley, K. M., Wei, W., Aiyar, R. S., Davis, R. W., Bankaitis, V. A., … Steinmetz, L. M. (2018). Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology, 36, 512-520.
Bao, Z., HamediRad, M., Xue, P., Xiao, H., Tasan, I., Chao, R., Liang, J., & Zhao, H. (2018). Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 36, 505-508.
Froehlich, J. J., Uyar, B., Herzog, M., Theil, K., Glazar, P., Akalin, A., & Rajewsky, N. (2021). Parallel genetics of regulatory sequences using scalable genome editing in vivo. Cell Reports, 35, 108988.
Neggers, J. E., Jacquemyn, M., Dierckx, T., Kleinstiver, B. P., Thibaut, H. J., & Daelemans, D. (2021). enAsCas12a enables CRISPR-directed evolution to screen for functional drug resistance mutations in sequences inaccessible to SpCas9. Molecular Therapy, 29, 208-224.
Tou, C. J., Schaffer, D. V., & Dueber, J. E. (2020). Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synthetic Biology, 9, 1911-1916.
Hess, G. T., Fresard, L., Han, K., Lee, C. H., Li, A., Cimprich, K. A., Montgomery, S. B., & Bassik, M. C. (2016). Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 13, 1036-1042.
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K. Y., Shimatani, Z., & Kondo, A. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353, aaf8729.
Despres, P. C., Dube, A. K., Nielly-Thibault, L., Yachie, N., & Landry, C. R. (2018). Double selection enhances the efficiency of target-AID and Cas9-based genome editing in yeast. G3 Genes|Genomes|Genetics, 8, 3163-3171.
Halperin, S. O., Tou, C. J., Wong, E. B., Modavi, C., Schaffer, D. V., & Dueber, J. E. (2018). CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 560, 248-252.
Feng, S., Liang, L., Shen, C., Lin, D., Li, J., Lyu, L., Liang, W., Zhong, L. L., Cook, G. M., Doi, Y., Chen, C., & Tian, G. B. (2022). A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. Molecular Therapy - Nucleic Acids, 29, 354-367.
Hao, W., Cui, W., Suo, F., Han, L., Cheng, Z., & Zhou, Z. (2022). Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chemical Science, 13, 14395-14409.
Moore, C. L., Papa, L. J., & Shoulders, M. D. (2018). A processive protein chimera introduces mutations across defined DNA regions in vivo. Journal of the American Chemical Society, 140, 11560-11564.
Mengiste, A. A., Wilson, R. H., Weissman, R. F., Papa Iii, L. J., Hendel, S. J., Moore, C. L., Butty, V. L., & Shoulders, M. D. (2023). Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Research, 51, e31.
Velazquez, E., Alvarez, B., Fernandez, L. A., & de Lorenzo, V. (2022). Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes. Microbial Biotechnology, 15, 2309-2323.
Butt, H., Ramirez, J. L. M., & Mahfouz, M. (2022). Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor. Life Science Alliance, 5, e202201538.
Chen, H., Liu, S., Padula, S., Lesman, D., Griswold, K., Lin, A., Zhao, T., Marshall, J. L., & Chen, F. (2020). Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nature Biotechnology, 38, 165-168.
Park, H., & Kim, S. (2021). Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Research, 49, e32.
Seo, D., Koh, B., Eom, G. E., Kim, H. W., & Kim, S. (2023). A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Research, 51, e59.
Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T., & Smolke, C. D. (2021). Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nature Communications, 12, 1579.
Hall, B. M., Ma, C. X., Liang, P., & Singh, K. K. (2009). Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbrück fluctuation analysis. Bioinformatics, 25, 1564-1565.
Foster, P. L. (2006). Methods for determining spontaneous mutation rates. Methods in Enzymology, 409, 195-213.
Liu, M., & Schatz, D. G. (2009). Balancing AID and DNA repair during somatic hypermutation. Trends in Immunology, 30, 173-181.
Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., & Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 102, 553-563.
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420-424.
Kurt, I. C., Zhou, R., Iyer, S., Garcia, S. P., Miller, B. R., Langner, L. M., Grunewald, J., & Joung, J. K. (2021). CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 39, 41-46.
Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M. A., Rosser, S. J., Bi, C., & Zhang, X. (2021). Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 39, 35-40.
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 41, 4336-4343.
Ohnishi, G., Endo, K., Doi, A., Fujita, A., Daigaku, Y., Nunoshiba, T., & Yamamoto, K. (2004). Spontaneous mutagenesis in haploid and diploid Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 325, 928-933.
Jiang, P. Y., Ollodart, A. R., Sudhesh, V., Herr, A. J., Dunham, M. J., & Harris, K. (2021). A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. eLife, 10, e68285.
Zafra, M. P., Schatoff, E. M., Katti, A., Foronda, M., Breinig, M., Schweitzer, A. Y., Simon, A., Han, T., Goswami, S., Montgomery, E., Thibado, J., Kastenhuber, E. R., Sanchez-Rivera, F. J., Shi, J., Vakoc, C. R., Lowe, S. W., Tschaharganeh, D. F., & Dow, L. E. (2018). Optimized base editors enable efficient editing in cells, organoids and mice. Nature Biotechnology, 36, 888-893.
Wallace, S. S. (2014). Base excision repair: a critical player in many games. DNA Repair, 19, 14-26.
Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58, 235-263.
Chen, L., Park, J. E., Paa, P., Rajakumar, P. D., Prekop, H. T., Chew, Y. T., Manivannan, S. N., & Chew, W. L. (2021). Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications, 12, 1384.
Koblan, L. W., Arbab, M., Shen, M. W., Hussmann, J. A., Anzalone, A. V., Doman, J. L., Newby, G. A., Yang, D., Mok, B., Replogle, J. M., Xu, A., Sisley, T. A., Weissman, J. S., Adamson, B., & Liu, D. R. (2021). Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 39, 1414-1425.
Tkach, J. M., Yimit, A., Lee, A. Y., Riffle, M., Costanzo, M., Jaschob, D., Hendry, J. A., Ou, J., Moffat, J., Boone, C., Davis, T. N., Nislow, C., & Brown, G. W. (2012). Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nature Cell Biology, 14, 966-976.
Admiraal, S. J., Eyler, D. E., Baldwin, M. R., Brines, E. M., Lohans, C. T., Schofield, C. J., & O'Brien, P. J. (2019). Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. Journal of Biological Chemistry, 294, 13629-13637.
Finney-Manchester, S. P., & Maheshri, N. (2013). Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Research, 41, e99.
Glassner, B. J., Rasmussen, L. J., Najarian, M. T., Posnick, L. M., & Samson, L. D. (1998). Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proceedings of the National Academy of Sciences of the United States of America, 95, 9997-10002.
O'Brien, P. J., & Ellenberger, T. (2004). Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. Journal of Biological Chemistry, 279, 9750-9757.
Berdal, K. G., Johansen, R. F., & Seeberg, E. (1998). Release of normal bases from intact DNA by a native DNA repair enzyme. The EMBO Journal, 17, 363-367.
Zhao, H. L., Xue, C., Wang, Y., Li, X. Y., Xiong, X. H., Yao, X. Q., & Liu, Z. M. (2007). Circumventing the heterogeneity and instability of human serum albumin-interferon-α2b fusion protein by altering its orientation. Journal of Biotechnology, 131, 245-252.
Boiteux, S., & Guillet, M. (2004). Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair, 3, 1-12.
Swartzlander, D. B., Griffiths, L. M., Lee, J., Degtyareva, N. P., Doetsch, P. W., & Corbett, A. H. (2010). Regulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress. Nucleic Acids Research, 38, 3963-3974.
Zan, H., White, C. A., Thomas, L. M., Mai, T., Li, G., Xu, Z., Zhang, J., & Casali, P. (2012). Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Reports, 2, 1220-1232.
Clairmont, C. S., & D'Andrea, A. D. (2021). REV7 directs DNA repair pathway choice. Trends in Cell Biology, 31, 965-978.
Tran, P. T., Erdeniz, N., Dudley, S., & Liskay, R. M. (2002). Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair, 1, 895-912.
Sakamoto, A. N., Stone, J. E., Kissling, G. E., McCulloch, S. D., Pavlov, Y. I., & Kunkel, T. A. (2007). Mutator alleles of yeast DNA polymerase ζ. DNA Repair, 6, 1829-1838.
Sertic, S., Quadri, R., Lazzaro, F., & Muzi-Falconi, M. (2020). EXO1: a tightly regulated nuclease. DNA Repair, 93, 102929.
Memisoglu, A., & Samson, L. (2000). Base excision repair in yeast and mammals. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 451, 39-51.

Auteurs

Zi-Rui Huang (ZR)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

Xiang-Rong Chen (XR)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

Dan-Feng Liu (DF)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

You-Zhi Cui (YZ)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

Bing-Zhi Li (BZ)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

Ying-Jin Yuan (YJ)

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH